Search results

1 – 10 of over 34000
Article
Publication date: 3 February 2020

Utino Worabo Woju and A.S. Balu

Performance of the structure depends on design, construction, environment, utilization and reliability aspects. Other factors can be controlled by adopting proper design and…

Abstract

Purpose

Performance of the structure depends on design, construction, environment, utilization and reliability aspects. Other factors can be controlled by adopting proper design and construction techniques, but the environmental factors are difficult to control. Hence, mostly in practice, the environmental factors are not considered in the analysis and design appropriately; however, their impact on the performance of the structures is significant along with the design life. It is in this light that this paper aims to perform the time-dependent performance analysis of reinforced concrete structures majorly considering environmental factors.

Design/methodology/approach

To achieve the intended objective, a simply supported reinforced concrete beam was designed and detailed as per the Euro Code (EC2). The time-dependent design parameters, corrosion parameters, creep and shrinkage were identified through thorough literature review. The common empirical equations were modified to consider the identified parameters, and finally, the time-dependent performance of reinforced concrete beam was performed.

Findings

Findings indicate that attention has to be paid to appropriate consideration of the environmental effect on reinforced concrete structures. In that, the time-dependent performance of reinforced concrete beam significantly decreases with time due to corrosion of reinforcement steel, creep and shrinkage.

Originality/value

However, the Euro code, Ethiopian code and Indian code threat the exposure condition of reinforced concrete by providing corresponding concrete cover that retards the corrosion initiation time but does not eliminate environmental effects. The results of this study clearly indicate that the capacity of reinforced concrete structure degrades with time due to corrosion and creep, whereas the action on the structure due to shrinkage increases. Therefore, appropriate remedial measures have to be taken to control the defects of structures due to the environmental factors to overcome the early failure of the structure.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 24 February 2012

Smitha Gopinath, Nagesh Iyer, J. Rajasankar and Sandra D'Souza

The purpose of this paper is to present integrated methodologies based on multilevel modelling concepts for finite element analysis (FEA) of reinforced concrete (RC) shell…

Abstract

Purpose

The purpose of this paper is to present integrated methodologies based on multilevel modelling concepts for finite element analysis (FEA) of reinforced concrete (RC) shell structures, with specific reference to account for the nonlinear behaviour of cracked concrete and the other associated features.

Design/methodology/approach

Geometric representation of the shell is enabled through multiple concrete layers. Composite characteristic of concrete is accounted by assigning different material properties to the layers. Steel reinforcement is smeared into selected concrete layers according to its position in the RC shell. The integrated model concurrently accounts for nonlinear effects due to tensile cracking, bond slip and nonlinear stress‐strain relation of concrete in compression. Smeared crack model having crack rotation capability is used to include the influence of tensile cracking of concrete. Propagation and change in direction of crack along thickness of shell with increase in load and deformation are traced using the layered geometry model. Relative movement between reinforcing steel and adjacent concrete is modelled using a compatible bond‐slip model validated earlier by the authors. Nonlinear iterative solution technique with imposed displacement in incremental form is adopted so that structures with local instabilities or strain softening can also be analysed.

Findings

Proposed methodologies are validated by evaluating ultimate strength of two RC shell structures. Nonlinear response of McNeice slab is found to compare well with that of experiment available in literature. Then, a RC cooling tower is analysed for factored wind loads to study its behaviour near ultimate load. Numerical validation demonstrates efficacy and usefullness of the proposed methodologies for nonlinear FEA of RC shell structures.

Originality/value

The present paper integrates critical methodologies used for behaviour modelling of concrete and reinforcement with the physical interaction among them. The study is unique by considering interaction of tensile cracking and bond‐slip which are the main contributors to nonlinearity in the nonlinear response of RC shell structures. Further, industrial application of the proposed modelling strategy is demonstrated by analysing a RC cooling tower shell for its nonlinear response. It is observed that the proposed methodologies in the integrated manner are unique and provide stability in nonlinear analysis of RC shell structures.

Article
Publication date: 13 August 2018

Jinliang Liu, Yanmin Jia, Guanhua Zhang and Jiawei Wang

In the freeze-thaw zone, the pre-stressed concrete of bridge structure will be damaged by freezing-thawing, the bearing capacity of structure will decrease and the safety will be…

Abstract

Purpose

In the freeze-thaw zone, the pre-stressed concrete of bridge structure will be damaged by freezing-thawing, the bearing capacity of structure will decrease and the safety will be affected. The purpose of this paper is to establish the time-dependent resistance degradation model of structure in the freeze-thaw zone, and analysis the structural reliability and remaining service life in different freeze-thaw zones.

Design/methodology/approach

First, according to the theory of structural design, a calculation model of the resistance of pre-stressed concrete structures in f freeze-thaw zone is established. Second, the time-dependent resistance model was verified by the test beam bending failure test results done by the research group, which has been in service for 20 years in freeze-thaw zone. Third, using JC algorithm in MATLAB to calculate the index on the reliability of pre-stressed concrete structure in frozen thawed zones, forecasting the s remaining service life of structure.

Findings

First, the calculation model of the resistance of pre-stressed concrete structures in freeze-thaw zone is accurate and it has excellent applicability. Second, the structural resistance deterioration time in Wet-Warm-Frozen Zone is the earliest. Third, once the pre-stressed reinforcement rusts, the structural reliability index will reach limit value quickly. Finally, the remaining service life of structure meets the designed expectation value only in a few of freeze-thaw zones in China.

Originality/value

The research will provide a reference for the design on the durability of a pre-stressed concrete structure in the freeze-thaw zone. In order to verify the security of pre-stressed concrete structures in the freeze-thaw zone, engineers can use the model presented in this paper for durability checking, it has an important significance.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 April 2022

Nadia Talbi, Aghiles Nekmouche, Mohand Ould Ouali, Naceur-Eddine Hannachi and Mohammed Naboussi Farsi

This paper aims to model the performances of frames structures by comparing the predictions of ordinary control concrete (CC) and concretes reinforced by fibers. Two types of…

Abstract

Purpose

This paper aims to model the performances of frames structures by comparing the predictions of ordinary control concrete (CC) and concretes reinforced by fibers. Two types of steel fibers were used in this work, industrial steel fibers (ISF) and tire-reclaimed fibers obtained by cutting virgin steel tire-cord to 50 mm, noticed virgin steel fibers (VSF). In total, 3% of VSF are used. The results obtained in this paper clearly show the contribution of fibers in improving the global and local behavior of the frames structures. VSF gives the same or better overall behavior as the use of industrial fibers for the same percentage of fibers, with the advantage that VSF contributes to the protection of the environment and limit the wastage of steel.

Design/methodology/approach

This work was carried out using the commercial finite element code Abaqus/Explicit. The behavior of the different concretes used in this study was modeled by the concrete damage plasticity (CDP) constitutive law. The methodology adopted to complete this work consisted in identifying, by calibration of the available experimental results with the numerical predictions, the parameters of the corresponding CDP model for each of the concretes used in this work. To this end, the authors have successively identified the CDP parameters for the CC-V (control concrete used by Vecchio and Emara, 1992) used in frame structure (R + 1). Subsequently, the CDP parameters of the CC-T (control concrete used by Tlemat, 2004), the CVSF (concrete with virgin steel fibers) and the CISF-1 (concrete with industrial steel fibers type 1, ISF-1) are identified using the experimental results of beams under bending tests. Once the model parameters were determined for each concrete, the authors conducted a series of simulations to show the benefit of introducing claimed and industrial fibers in frame structure (R + 1) and (R + 2). This approach recommends the use of concrete reinforced with steel fibers, mainly 6% by mass of VSF and ISF-1, in place of ordinary concrete in new construction to increase the resistance of structures and contribute, if applicable, to the protection of the environment.

Findings

The main findings of this study can be summarized by: the strength and ductility of the frames structures made of concrete fiber are significantly increased. The use of tire-reclaimed steel fibers (VSF) gives the same or better overall behavior as the use of industrial fibers. In addition to their good mechanical contribution, the tire-reclaimed fibers contribute to the protection of the environment and limit the wastage of steel. The use of fibers reduces the cracking zones in concrete fiber frames structures. The usefulness of distinguishing the interstory displacement limits set by codes, in particular, uniform building code (UBC-97), for ordinary concretes and concrete reinforced with fibers is addressed.

Originality/value

The contribution of tire-reclaimed and industrial fibers on the strength and ductility of reinforced concrete-frames structures is addressed. The use of tire-reclaimed steel fibers gives the same or better overall behavior as the use of industrial fibers, the tire-reclaimed fibers having the advantage of contributing to the protection of the environment and limiting the wastage of steel. The paper also points to the usefulness of distinguishing the interstory displacement limits set by codes, in particular UBC-97, for ordinary concrete and concrete reinforced with fibers, in accordance to the predictions of the capacity curves.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 April 2018

Le Wang

During the service condition of residential constructions with concrete structure, the influence of inside and exterior factors will result in different degrees of harm to concrete

Abstract

Purpose

During the service condition of residential constructions with concrete structure, the influence of inside and exterior factors will result in different degrees of harm to concrete engineering. Therefore, it is very necessary to continue engineering work toward the concrete structure. Therefore, the purpose of this study is to evaluate the influence of the factors on the comprehensive performance of the concrete structure engineering.

Design/methodology/approach

Applying a mathematics method to establish the comprehensive evaluation model of the concrete structure engineering performance, qualitative and quantitative methods were adopted for reinforced concrete structural performance analysis.

Findings

The key to a safe construction project is to require all bidders to submit a written safety plan with their bids. The instruction to bidders must include guidelines for an acceptable safety plan and state clearly that the substance of the safety plan will be reviewed, and its adequacy will be a determining factor in who shall be selected as the contractor.

Originality/value

Based on the characteristics of concrete structure, applying the analytic hierarchy process to evaluate the concrete structure engineering comprehensive performance, an evaluation index system was built. The research combines quantitative method with qualitative method evaluation was made.

Details

Journal of Engineering, Design and Technology, vol. 16 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 25 December 2023

Jiahe Wang, Huajian Li, Chengxian Ma, Chaoxun Cai, Zhonglai Yi and Jiaxuan Wang

This study aims to analyze the factors, evaluation techniques of the durability of existing railway engineering.

Abstract

Purpose

This study aims to analyze the factors, evaluation techniques of the durability of existing railway engineering.

Design/methodology/approach

China has built a railway network of over 150,000 km. Ensuring the safety of the existing railway engineering is of great significance for maintaining normal railway operation order. However, railway engineering is a strip structure that crosses multiple complex environments. And railway engineering will withstand high-frequency impact loads from trains. The above factors have led to differences in the deterioration characteristics and maintenance strategies of railway engineering compared to conventional concrete structures. Therefore, it is very important to analyze the key factors that affect the durability of railway structures and propose technologies for durability evaluation.

Findings

The factors that affect the durability and reliability of railway engineering are mainly divided into three categories: material factors, environmental factors and load factors. Among them, material factors also include influencing factors, such as raw materials, mix proportions and so on. Environmental factors vary depending on the service environment of railway engineering, and the durability and deterioration of concrete have different failure mechanisms. Load factors include static load and train dynamic load. The on-site rapid detection methods for five common diseases in railway engineering are also proposed in this paper. These methods can quickly evaluate the durability of existing railway engineering concrete.

Originality/value

The research can provide some new evaluation techniques and methods for the durability of existing railway engineering.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 25 April 2022

Tao Xu, Wei Shen, Xiaoshan Lin and Yi Min Xie

Irregularly shaped architectural designs with surfaces curved in multiple directions, known as free-form designs, have gained significant public interest in recent decades…

Abstract

Purpose

Irregularly shaped architectural designs with surfaces curved in multiple directions, known as free-form designs, have gained significant public interest in recent decades. However, it is challenging to convert complex designs into real structures. This paper aims to realize free-form construction by developing a novel workflow in which additively manufactured thermoplastic polyurethane (TPU) molds are used.

Design/methodology/approach

The workflow is developed through mechanical tests on additively manufactured TPU specimens, determination of TPU mold design criteria and exploration of mold preparation methods. Two concrete elements with free-form geometries are fabricated using the proposed workflow.

Findings

TPU is a thermoplastic elastomer that is strong and inexpensive, making it an ideal mold material for casting complex concrete structures. An innovative workflow is developed in which TPU molds are used, appropriate release agents are selected for different concrete casting conditions and a mold subdivision method is proposed to facilitate the demolding process. Furthermore, the integrity of TPU molds can be maintained by following the proposed workflow, enabling repetitive use of molds. The fabrication of the two free-form structures shows that complex concrete members with high dimensional accuracy and excellent surface quality can be manufactured using the proposed method.

Originality/value

To the best of the authors’ knowledge, this is the first systematic study on using additively manufactured TPU molds for concrete casting of complex structures. The new techniques developed in this research can be applied to large-scale architectural, engineering and construction projects.

Details

Rapid Prototyping Journal, vol. 28 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 October 2013

Nikolina Zivaljic, Hrvoje Smoljanovic and Zeljana Nikolic

The purpose of this paper is to present a new numerical model based on a combined finite-discrete element method, capable of predicting the behaviour of reinforced concrete

Abstract

Purpose

The purpose of this paper is to present a new numerical model based on a combined finite-discrete element method, capable of predicting the behaviour of reinforced concrete structures under dynamic load up to failure.

Design/methodology/approach

An embedded model of reinforcing bars is implemented in combined finite-discrete element code. Cracking of the structure was enabled by a combined single and smeared crack model. The model for reinforcing bars was based on an approximation of the experimental curves for the bar strain in the crack. The developed numerical model includes interaction effects between reinforcement and concrete and cyclic behaviour of concrete and steel during dynamic loading.

Findings

The findings provide a realistic description of cracking in the concrete structure, where all non-linear effects are realized in joint elements of the concrete and reinforcing bars. This leads to a robust and precise model for non-linear analysis of reinforced concrete structures under dynamic load.

Originality/value

This paper presents new robust finite-discrete element numerical model for analysis and prediction of the collapse of reinforced concrete structures. The model is capable of including the effects of dynamic loading on the structures, both in the linear-elastic range, as well as in the non-linear range including crack initiation and propagation, energy dissipation due to non-linear effects, inertial effects due to motion, contact impact, and the state of rest, which is a consequence of energy dissipation in the system.

Details

Engineering Computations, vol. 30 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2005

Pavao Marović, Željana Nikolić and Mirela Galić

To provide an insight in one relatively simple and efficient numerical model for analysing reinforced and prestressed concrete structures, and to raise a discussion leading to the…

Abstract

Purpose

To provide an insight in one relatively simple and efficient numerical model for analysing reinforced and prestressed concrete structures, and to raise a discussion leading to the creation of one universal and robust 3D algorithm.

Design/methodology/approach

A new numerical model for analysing reinforced and prestressed concrete structures is developed and main theoretical details are described to aid the understandings. The approach is clear, easily readable and the body of the text is divided into logical sections starting from theoretical explanations ending in the large number of different practical examples.

Findings

Provides information about developing new and relatively simple numerical model for analysing reinforced and prestressed concrete structures, indicating what can be improved. Recognises the lack of knowing real behaviour of 3D concrete and starts a discussion on it.

Research limitations/implications

The knowledge of the 2D and especially 3D concrete behaviour is still poor and the concrete model developers use many simplifications. So, many new experiments should be performed and better numerical models should be developed. There is large area for researchers but having in mind that experiments are very expensive.

Practical implications

Obtained results of the 3D analysis of reinforced and prestressed concrete structures can stand as a benchmark for future researches in this field especially to the young researchers and concrete model developers.

Originality/value

This paper presents new and very simple numerical model for analysing reinforced and prestressed concrete structures. Paper could be very valuable to the researchers in this field as a benchmark for their analyses.

Details

Engineering Computations, vol. 22 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 January 2020

Ante Džolan, Mladen Kožul, Alen Harapin and Dragan Ćubela

This paper aims to present an approach for the numerical simulation of concrete shrinkage. First, some physical mechanisms of shrinkage are described and then the developed…

Abstract

Purpose

This paper aims to present an approach for the numerical simulation of concrete shrinkage. First, some physical mechanisms of shrinkage are described and then the developed numerical model for the analysis of shrinkage of spatial three-dimensional structures using thermal analogy is presented. Results of the real behavior of structures because of concrete shrinkage using the developed numerical model are compared with the experimental and it is clearly shown that the developed numerical model is an efficient tool in predicting the time-dependent behavior of all concrete structures.

Design/methodology/approach

In this paper, Fib Model Code 2010 to predict shrinkage deformation of concrete is used, and it was incorporated in the three-dimensional numerical model using the thermal analogy. Mentioned three-dimensional numerical model uses the modified Rankine material law to describe concrete behavior in tension and modified Mohr-Coulomb material law to describe concrete behavior in compression. The developed three-dimensional numerical model successfully analyzes the behavior of reinforced and/or prestressed concrete structures including time-dependent deformations of concrete as well.

Findings

Results are shown in this paper clearly demonstrate the reliability of the developed numerical model in predicting the shrinkage strain, as well as its impact on concrete and reinforced concrete structures. The results obtained using the developed numerical model are in better agreement with the experimental results, than the results obtained using the numerical models from literature that also use the Fib Model Code 2010 to predict the shrinkage strain. So, it can be concluded that for a real simulation of concrete structures, alongside the model for predicting the shrinkage strain, the models for concrete behavior in tension and compression have a very important role.

Originality/value

Results of the developed three-dimensional numerical model were compared with experimental results from literature and with theoretical foundations, and it can be talked that this numerical model presents a good tool for analysis of reinforced and prestressed concrete structures including shrinkage deformation of concrete. Results obtained using the developed three-dimensional numerical model are better agreed with experimental than results of other numerical model from literature.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 34000