Search results

1 – 10 of 105
Article
Publication date: 4 April 2024

Bikram Jit Singh, Rippin Sehgal, Ayon Chakraborty and Rakesh Kumar Phanden

The use of technology in 4th industrial revolution is at its peak. Industries are trying to reduce the consumption of resources by effectively utilizing information and technology…

Abstract

Purpose

The use of technology in 4th industrial revolution is at its peak. Industries are trying to reduce the consumption of resources by effectively utilizing information and technology to connect different functioning agents of the manufacturing industry. Without digitization “Industry 4.0” will be a virtual reality. The present survey-based study explores the factual status of digital manufacturing in the Northern India.

Design/methodology/approach

After an extensive literature review, a questionnaire was designed to gather different viewpoints of Indian industrial practitioners. The first half contains questions related to north Indian demographic factors which may affect digitalization of India. The latter half includes the queries concerned with various operational factors (or drivers) driving the digital revolution without ignoring Indian constraints.

Findings

The focus of this survey was to understand the current level of digital revolution under the ongoing push by the Indian government focused upon digital movement. The analysis included non-parametric testing of the various demographic and functional factors impacting the digital echoes, specifically in Northern India. Findings such as technological upgradations were independent of type of industry, the turnover or the location. About 10 key operational factors were thoughtfully grouped into three major categories—internal Research and Development (R&D), the capability of the supply chain and the capacity to adapt to the market. These factors were then examined to understand how they contribute to digital manufacturing, utilizing an appropriate ordinal logistic regression. The resulting predictive analysis provides seldom-seen insights and valuable suggestions for the most effective deployment of digitalization in Indian industries.

Research limitations/implications

The country-specific Industry 4.0 literature is quite limited. The survey mainly focuses on the National Capital Region. The number of demographic and functional factors can further be incorporated. Moreover, an addition of factors related to ecology, environment and society can make the study more insightful.

Practical implications

The present work provides valuable insights about the current status of digitization and expects to facilitate public or private policymakers to implement digital technologies in India with less efforts and the least resistance. It empowers India towards Industry 4.0 based tools and techniques and creates new socio-economic dimensions for the sustainable development.

Originality/value

The quantitative nature of the study and its statistical predictions (data-based) are novel. The clubbing of similar success factors to avoid inter-collinearity and complexity is seldom seen. The predictive analytics provided in this study is quite elusive as it provides directions with logic. It will help the Indian Government and industrial strategists to plan and perform their interventions accordingly.

Details

Journal of Strategy and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1755-425X

Keywords

Article
Publication date: 27 February 2023

Guanxiong Wang, Xiaojian Hu and Ting Wang

By introducing the mass customization service mode into the cloud logistics environment, this paper studies the joint optimization of service provider selection and customer order…

210

Abstract

Purpose

By introducing the mass customization service mode into the cloud logistics environment, this paper studies the joint optimization of service provider selection and customer order decoupling point (CODP) positioning based on the mass customization service mode to provide customers with more diversified and personalized service content with lower total logistics service cost.

Design/methodology/approach

This paper addresses the general process of service composition optimization based on the mass customization mode in a cloud logistics service environment and constructs a joint decision model for service provider selection and CODP positioning. In the model, the two objective functions of minimum service cost and most satisfactory delivery time are considered, and the Pareto optimal solution of the model is obtained via the NSGA-II algorithm. Then, a numerical case is used to verify the superiority of the service composition scheme based on the mass customization mode over the general scheme and to verify the significant impact of the scale effect coefficient on the optimal CODP location.

Findings

(1) Under the cloud logistics mode, the implementation of the logistics service mode based on mass customization can not only reduce the total cost of logistics services by means of the scale effect of massive orders on the cloud platform but also make more efficient use of a large number of logistics service providers gathered on the cloud platform to provide customers with more customized and diversified service content. (2) The scale effect coefficient directly affects the total cost of logistics services and significantly affects the location of the CODP. Therefore, before implementing the mass customization logistics service mode, the most reasonable clustering of orders on the cloud logistics platform is very important for the follow-up service combination.

Originality/value

The originality of this paper includes two aspects. One is to introduce the mass customization mode in the cloud logistics service environment for the first time and summarize the operation process of implementing the mass customization mode in the cloud logistics environment. Second, in order to solve the joint decision optimization model of provider selection and CODP positioning, this paper designs a method for solving a mixed-integer nonlinear programming model using a multi-layer coding genetic algorithm.

Details

Kybernetes, vol. 53 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 13 February 2024

Sara El-Breshy, Ahmad E. Elhabashy, Hadi Fors and Asmaa Harfoush

With the emergence of the different Industry 4.0 technologies and the interconnectedness between the physical and cyber components within manufacturing systems, the manufacturing…

Abstract

Purpose

With the emergence of the different Industry 4.0 technologies and the interconnectedness between the physical and cyber components within manufacturing systems, the manufacturing environment is becoming more susceptible to unexpected disruptions, and manufacturing systems need to be even more resilient than before. Hence, the purpose of this work is to explore how does incorporating Industry 4.0 into current manufacturing systems affects (positively or negatively) its resiliency.

Design/methodology/approach

A Systematic Literature Review (SLR) was performed with a focus on studying the manufacturing system’s resilience when applying Industry 4.0 technologies. The SLR is composed of four phases, which are (1) questions formulation, (2) determining an adequate search strategy, (3) publications filtering and (4) analysis and interpretation.

Findings

From the SLR results’ analysis, four potential research opportunities are proposed related to conducting additional research within the research themes in this field, considering less studied Industry 4.0 technologies or more than one technology, investigating the impact of some technologies on manufacturing system’s resilience, exploring more avenues to incorporate resiliency to preserve the state of the system, and suggesting metrics to quantify the resilience of manufacturing systems.

Originality/value

Although there are a number of publications discussing the resiliency of manufacturing systems, none fully investigated this topic when different Industry 4.0 technologies have been considered. In addition to determining the current research state-of-art in this relatively new research area and identifying potential future research opportunities, the main value of this work is in providing insights about this research area across three different perspectives/streams: (1) Industry 4.0 technologies, (2) resiliency and (3) manufacturing systems and their intersections.

Details

Journal of Manufacturing Technology Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 31 March 2023

Dharmendra Hariyani and Sanjeev Mishra

The purposes of this paper are (1) to identify and rank the various enablers for an integrated sustainable-green-lean-six sigma-agile manufacturing system (ISGLSAMS), and (2) to…

Abstract

Purpose

The purposes of this paper are (1) to identify and rank the various enablers for an integrated sustainable-green-lean-six sigma-agile manufacturing system (ISGLSAMS), and (2) to study their correlations and their impact on organizational performance.

Design/methodology/approach

Three tiers methodology is used to analyze the enablers for the successful adoption of ISGLSAMS. First, a total of 32 ISGLSAMS enablers are identified through a comprehensive literature review. Then, data are collected with a structured questionnaire from 108 Indian manufacturing industries. Then, an analytic approach is used to analyze (1) the relevance and significance of enablers and (2) their correlations (1) with each other, and (2) with the organizational performance outcomes, to strengthen the understanding of ISGLSAMS.

Findings

The findings suggest that top management commitment, sustainable reconfigurable manufacturing system, organization resources for 6 Rs, customers' and stakeholders' involvement, corporate social responsibility (CSR), customers and stakeholders-focused strategic alliances, dynamic manufacturing strategies, use of information and communication technology, concurrent engineering, standardized tasks for continuous improvement, virtual network of supply chain partners, real-time monitoring and control, training and education, employees' involvement and empowerment enablers are the higher level enablers for the adoption of ISGLSAMS. Findings also suggest that there is a scope for research in the incorporation of lot size reduction, Keiretsu-Kraljic supply chain relationship strategy, external collaborations with the stakeholders other than supply chain members, matrix flatter organization structure, employees' career development, justified employees' wages, government support for research fund and subsidies and vendor-managed inventory practices for ISGLSAMS. Top management commitment, sustainable reconfigurable manufacturing system, organization resources for 6 Rs, corporate social responsibility (CSR), dynamic manufacturing strategies, use of information and communication technology, concurrent engineering, virtual network of supply chain partners, real-time monitoring and control, training and education, employees' involvement and empowerment have a significant effect on (1) sustainable product design, (2) sustainable production system, (3) improvement in the sale, (4) improvement in market responsiveness, (5) improvement in the competitive position and (6) improvement in the global market image.

Practical implications

Through this study of ISGLSAMS enablers and their interdependence, and their impact on ISGLSAMS performance outcomes government, organizations, stakeholders, policymakers and supply chain partners may plan the policy, roadmap and strategies for the successful adoption of (1) ISGLSAMS in the organizational value chain, and (2) Industrial ecology and industrial symbiosis in India. The study also contributes to the industrial managers, and value chain partners a better understanding of ISGLSAMS.

Originality/value

This study is the first attempt to understand (1) the ISGLSAMS enablers and their correlations, and (2) the effect of ISGLSAMS enablers on ISGLSAMS performance outcomes to get the competitive and sustainability advantage. The study contributes to the practitioners, policymakers, organizations, government, researchers and academicians a better understanding of ISGLSAMS enablers and its performance outcomes.

Article
Publication date: 28 December 2023

Vikram Singh, Nirbhay Sharma and Somesh Kumar Sharma

Every company or manufacturing system is vulnerable to breakdowns. This research aims to analyze the role of Multi-Agent Technology (MAT) in minimizing breakdown probabilities in…

Abstract

Purpose

Every company or manufacturing system is vulnerable to breakdowns. This research aims to analyze the role of Multi-Agent Technology (MAT) in minimizing breakdown probabilities in Manufacturing Industries.

Design/methodology/approach

This study formulated a framework of six factors and twenty-eight variables (explored in the literature). A hybrid approach of Multi-Criteria Decision-Making Technique (MCDM) was employed in the framework to prioritize, rank and establish interrelationships between factors and variables grouped under them.

Findings

The research findings reveal that the “Manufacturing Process” is the most essential factor, while “Integration Manufacturing with Maintenance” is highly impactful on the other factors to eliminate the flaws that may cause system breakdown. The findings of this study also provide a ranking order for variables to increase the performance of factors that will assist manufacturers in reducing maintenance efforts and enhancing process efficiency.

Practical implications

The ranking order developed in this study may assist manufacturers in reducing maintenance efforts and enhancing process efficiency. From the manufacturer’s perspective, this research presented MAT as a key aspect in dealing with the complexity of manufacturing operations in manufacturing organizations. This research may assist industrial management with insights into how they can lower the probability of breakdown, which will decrease expenditures, boost productivity and enhance overall efficiency.

Originality/value

This study is an original contribution to advancing MAT’s theory and empirical applications in manufacturing organizations to decrease breakdown probability.

Article
Publication date: 29 March 2024

Pingyang Zheng, Shaohua Han, Dingqi Xue, Ling Fu and Bifeng Jiang

Because of the advantages of high deposition efficiency and low manufacturing cost compared with other additive technologies, robotic wire arc additive manufacturing (WAAM…

Abstract

Purpose

Because of the advantages of high deposition efficiency and low manufacturing cost compared with other additive technologies, robotic wire arc additive manufacturing (WAAM) technology has been widely applied for fabricating medium- to large-scale metallic components. The additive manufacturing (AM) method is a relatively complex process, which involves the workpiece modeling, conversion of the model file, slicing, path planning and so on. Then the structure is formed by the accumulated weld bead. However, the poor forming accuracy of WAAM usually leads to severe dimensional deviation between the as-built and the predesigned structures. This paper aims to propose a visual sensing technology and deep learning–assisted WAAM method for fabricating metallic structure, to simplify the complex WAAM process and improve the forming accuracy.

Design/methodology/approach

Instead of slicing of the workpiece modeling and generating all the welding torch paths in advance of the fabricating process, this method is carried out by adding the feature point regression branch into the Yolov5 algorithm, to detect the feature point from the images of the as-built structure. The coordinates of the feature points of each deposition layer can be calculated automatically. Then the welding torch trajectory for the next deposition layer is generated based on the position of feature point.

Findings

The mean average precision score of modified YOLOv5 detector is 99.5%. Two types of overhanging structures have been fabricated by the proposed method. The center contour error between the actual and theoretical is 0.56 and 0.27 mm in width direction, and 0.43 and 0.23 mm in height direction, respectively.

Originality/value

The fabrication of circular overhanging structures without using the complicate slicing strategy, turning table or other extra support verified the possibility of the robotic WAAM system with deep learning technology.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 March 2024

Peter Madzik, Lukas Falat, Luay Jum’a, Mária Vrábliková and Dominik Zimon

The set of 2,509 documents related to the human-centric aspect of manufacturing were retrieved from Scopus database and systmatically analyzed. Using an unsupervised machine…

68

Abstract

Purpose

The set of 2,509 documents related to the human-centric aspect of manufacturing were retrieved from Scopus database and systmatically analyzed. Using an unsupervised machine learning approach based on Latent Dirichlet Allocation we were able to identify latent topics related to human-centric aspect of Industry 5.0.

Design/methodology/approach

This study aims to create a scientific map of the human-centric aspect of manufacturing and thus provide a systematic framework for further research development of Industry 5.0.

Findings

In this study a 140 unique research topics were identified, 19 of which had sufficient research impact and research interest so that we could mark them as the most significant. In addition to the most significant topics, this study contains a detailed analysis of their development and points out their connections.

Originality/value

Industry 5.0 has three pillars – human-centric, sustainable, and resilient. The sustainable and resilient aspect of manufacturing has been the subject of many studies in the past. The human-centric aspect of such a systematic description and deep analysis of latent topics is currently just passing through.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 18 March 2024

Syed Mithun Ali, Muhammad Najmul Haque, Md. Rayhan Sarker, Jayakrishna Kandasamy and Ilias Vlachos

Bangladesh's ready-made garment (RMG) industry plays a vital role in the economic growth of this country. As the global trend in the fashion market has introduced a high-mix…

Abstract

Purpose

Bangladesh's ready-made garment (RMG) industry plays a vital role in the economic growth of this country. As the global trend in the fashion market has introduced a high-mix, low-volume ordering style, manufacturers are facing an increased number of changeovers in their production systems. However, most of the Bangladeshi RMG manufacturers are not yet ready to respond to such small orders and to improve the flexibility of their production systems. Consequently, the industry is falling behind in global market competition. Thus, this study aims to advance the current performance of RMG manufacturing operations to respond to the fast-fashion industry's challenges effectively using quick changeover.

Design/methodology/approach

In this study, a Single-Minute Exchange of Dies (SMED) is applied to attain quick changeover following the best practices of lean manufacturing.

Findings

This study examined the performance of the SMED technique to reduce changeover time in two case organisations. The changeover time was reduced by 70.76% from 434.56 min to 127.08 min and 42.12% from 2,664 min to 1,542 min for the case organisations, respectively. The results of this study show that companies require improved changeover times to address the demand for high-mix, low-volume orders.

Originality/value

This study will certainly guide practitioners of the RMG industry to adopt SMED to reduce changeover time to meet small batch production.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 7 November 2022

Buddhini Ginigaddara, Srinath Perera, Yingbin Feng, Payam Rahnamayiezekavat and Mike Kagioglou

Industry 4.0 is exacerbating the need for offsite construction (OSC) adoption, and this rapid transformation is pushing the boundaries of construction skills towards extensive…

Abstract

Purpose

Industry 4.0 is exacerbating the need for offsite construction (OSC) adoption, and this rapid transformation is pushing the boundaries of construction skills towards extensive modernisation. The adoption of this modern production strategy by the construction industry would redefine the position of OSC. This study aims to examine whether the existing skills are capable of satisfying the needs of different OSC types.

Design/methodology/approach

A critical literature review evaluated the impact of transformative technology on OSC skills. An existing industry standard OSC skill classification was used as the basis to develop a master list that recognises emerging and diminishing OSC skills. The master list recognises 67 OSC skills under six skill categories: managers, professionals, technicians and trade workers, clerical and administrative workers, machinery operators and drivers and labourers. The skills data was extracted from a series of 13 case studies using document reviews and semi-structured interviews with project stakeholders.

Findings

The multiple case study evaluation recognised 13 redundant skills and 16 emerging OSC skills such as architects with building information modelling and design for manufacture and assembly knowledge, architects specialised in design and logistics integration, advanced OSC technical skills, factory operators, OSC estimators, technicians for three dimensional visualisation and computer numeric control operators. Interview findings assessed the current state and future directions for OSC skills development. Findings indicate that the prevailing skills are not adequate to readily relocate construction activities from onsite to offsite.

Originality/value

To the best of the authors’ knowledge, this research is one of the first studies that recognises the major differences in skill requirements for non-volumetric and volumetric OSC types.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 27 December 2021

Riddhi Thavi, Rujuta Jhaveri, Vaibhav Narwane, Bhaskar Gardas and Nima Jafari Navimipour

This paper aims to provide a literature review on the cloud-based platforms for the education sectors. The several aspects of cloud computing adoption in education…

Abstract

Purpose

This paper aims to provide a literature review on the cloud-based platforms for the education sectors. The several aspects of cloud computing adoption in education, remote/distance learning and the application of cloud-based design and manufacturing (CBDM) have been studied and theorised.

Design/methodology/approach

A four-step methodology was adopted to analyse and categorise the papers obtained through various search engines. Out of 429 research articles, 72 papers were shortlisted for the detailed analysis.

Findings

Many factors that influence cloud computing technology adoption in the education sector have been identified in this paper. The research findings on several research items have been tabulated and discussed. Based on the theoretical research done on cloud computing for education, cloud computing for remote/distance learning and CBDM, cloud computing could enhance the educational systems in mainly developing countries and improve the scope for remote/distance learning.

Research limitations/implications

This study is limited to papers published only in the past decade from 2011 to 2020. Besides, this review was unable to include journal articles published in different languages. Nevertheless, for the effective teaching and learning process, this paper could help understand the importance and improve the process of adopting cloud computing concepts in educational universities and platforms.

Originality/value

This study is a novel one as a research review constituting cloud computing applications in education and extended for remote/distance learning and CBDM, which have not been studied in the existing knowledge base.

1 – 10 of 105