Search results

1 – 10 of 460
Article
Publication date: 22 March 2024

Sanaz Khalaj Rahimi and Donya Rahmani

The study aims to optimize truck routes by minimizing social and economic costs. It introduces a strategy involving diverse drones and their potential for reusing at DNs based on…

20

Abstract

Purpose

The study aims to optimize truck routes by minimizing social and economic costs. It introduces a strategy involving diverse drones and their potential for reusing at DNs based on flight range. In HTDRP-DC, trucks can select and transport various drones to LDs to reduce deprivation time. This study estimates the nonlinear deprivation cost function using a linear two-piece-wise function, leading to MILP formulations. A heuristic-based Benders Decomposition approach is implemented to address medium and large instances. Valid inequalities and a heuristic method enhance convergence boundaries, ensuring an efficient solution methodology.

Design/methodology/approach

Research has yet to address critical factors in disaster logistics: minimizing the social and economic costs simultaneously and using drones in relief distribution; deprivation as a social cost measures the human suffering from a shortage of relief supplies. The proposed hybrid truck-drone routing problem minimizing deprivation cost (HTDRP-DC) involves distributing relief supplies to dispersed demand nodes with undamaged (LDs) or damaged (DNs) access roads, utilizing multiple trucks and diverse drones. A Benders Decomposition approach is enhanced by accelerating techniques.

Findings

Incorporating deprivation and economic costs results in selecting optimal routes, effectively reducing the time required to assist affected areas. Additionally, employing various drone types and their reuse in damaged nodes reduces deprivation time and associated deprivation costs. The study employs valid inequalities and the heuristic method to solve the master problem, substantially reducing computational time and iterations compared to GAMS and classical Benders Decomposition Algorithm. The proposed heuristic-based Benders Decomposition approach is applied to a disaster in Tehran, demonstrating efficient solutions for the HTDRP-DC regarding computational time and convergence rate.

Originality/value

Current research introduces an HTDRP-DC problem that addresses minimizing deprivation costs considering the vehicle’s arrival time as the deprivation time, offering a unique solution to optimize route selection in relief distribution. Furthermore, integrating heuristic methods and valid inequalities into the Benders Decomposition approach enhances its effectiveness in solving complex routing challenges in disaster scenarios.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Executive summary
Publication date: 3 April 2024

TAIWAN: Earthquake may spur chip diversification

Article
Publication date: 26 September 2023

Seyed Mojtaba Taghavi, Vahidreza Ghezavati, Hadi Mohammadi Bidhandi and Seyed Mohammad Javad Mirzapour Al-e-Hashem

This paper aims to minimize the mean-risk cost of sustainable and resilient supplier selection, order allocation and production scheduling (SS,OA&PS) problem under uncertainty of…

Abstract

Purpose

This paper aims to minimize the mean-risk cost of sustainable and resilient supplier selection, order allocation and production scheduling (SS,OA&PS) problem under uncertainty of disruptions. The authors use conditional value at risk (CVaR) as a risk measure in optimizing the combined objective function of the total expected value and CVaR cost. A sustainable supply chain can create significant competitive advantages for companies through social justice, human rights and environmental progress. To control disruptions, the authors applied (proactive and reactive) resilient strategies. In this study, the authors combine resilience and social responsibility issues that lead to synergy in supply chain activities.

Design/methodology/approach

The present paper proposes a risk-averse two-stage mixed-integer stochastic programming model for sustainable and resilient SS,OA&PS problem under supply disruptions. In this decision-making process, determining the primary supplier portfolio according to the minimum sustainable-resilient score establishes the first-stage decisions. The recourse or second-stage decisions are: determining the amount of order allocation and scheduling of parts by each supplier, determining the reactive risk management strategies, determining the amount of order allocation and scheduling by each of reaction strategies and determining the number of products and scheduling of products on the planning time horizon. Uncertain parameters of this study are the start time of disruption, remaining capacity rate of suppliers and lead times associated with each reactive strategy.

Findings

In this paper, several numerical examples along with different sensitivity analyses (on risk parameters, minimum sustainable-resilience score of suppliers and shortage costs) were presented to evaluate the applicability of the proposed model. The results showed that the two-stage risk-averse stochastic mixed-integer programming model for designing the SS,OA&PS problem by considering economic and social aspects and resilience strategies is an effective and flexible tool and leads to optimal decisions with the least cost. In addition, the managerial insights obtained from this study are extracted and stated in Section 4.6.

Originality/value

This work proposes a risk-averse stochastic programming approach for a new multi-product sustainable and resilient SS,OA&PS problem. The planning horizon includes three periods before the disruption, during the disruption period and the recovery period. Other contributions of this work are: selecting the main supply portfolio based on the minimum score of sustainable-resilient criteria of suppliers, allocating and scheduling suppliers orders before and after disruptions, considering the balance constraint in receiving parts and using proactive and reactive risk management strategies simultaneously. Also, the scheduling of reactive strategies in different investment modes is applied to this problem.

Open Access
Article
Publication date: 2 January 2023

Ismail Abdi Changalima, Ismail Juma Ismail and Alban Dismas Mchopa

This study aims to examine the role of supplier selection and supplier monitoring in public procurement efficiency in terms of cost reduction in Tanzania.

2251

Abstract

Purpose

This study aims to examine the role of supplier selection and supplier monitoring in public procurement efficiency in terms of cost reduction in Tanzania.

Design/methodology/approach

A structured questionnaire was used to collect cross-sectional survey data from 179 public procuring entities in Tanzania. Structural equation modelling (SEM) was used to analyse the collected data.

Findings

The findings revealed that supplier selection and supplier monitoring are positive and significant predictors of public procurement efficiency in terms of cost reduction.

Research limitations/implications

This study was conducted in Tanzanian public procurement contexts, so generalisations should be made with caution. Also, this study collected cross-sectional data; other studies may consider longitudinal data.

Practical implications

This study provides procurement practitioners with insights into selecting the proper suppliers and embracing supplier monitoring to achieve procurement efficiency in terms of cost reduction.

Originality/value

This study examines the effects of supplier selection and supplier monitoring on procurement cost reduction as a measure of public procurement efficiency in the Tanzanian context. Consequently, it provides empirical evidence of supplier management practices in the public procurement context.

Details

Vilakshan - XIMB Journal of Management, vol. 21 no. 1
Type: Research Article
ISSN: 0973-1954

Keywords

Article
Publication date: 18 March 2024

Yash Daultani, Ashish Dwivedi, Saurabh Pratap and Akshay Sharma

Natural disasters cause serious operational risks and disruptions, which further impact the food supply in and around the disaster-impacted area. Resilient functions in the supply…

40

Abstract

Purpose

Natural disasters cause serious operational risks and disruptions, which further impact the food supply in and around the disaster-impacted area. Resilient functions in the supply chain are required to absorb the impact of resultant disruptions in perishable food supply chains (FSC). The present study identifies specific resilient functions to overcome the problems created by natural disasters in the FSC context.

Design/methodology/approach

The quality function deployment (QFD) method is utilized for identifying these relations. Further, fuzzy term sets and the analytical hierarchy process (AHP) are used to prioritize the identified problems. The results obtained are employed to construct a QFD matrix with the solutions, followed by the technique for order of preference by similarity to the ideal solution (TOPSIS) on the house of quality (HOQ) matrix between the identified problems and functions.

Findings

The results from the study reflect that the shortage of employees in affected areas is the major problem caused by a natural disaster, followed by the food movement problem. The results from the analysis matrix conclude that information sharing should be kept at the highest priority by policymakers to build and increase resilient functions and sustainable crisis management in a perishable FSC network.

Originality/value

The study suggests practical implications for managing a FSC crisis during a natural disaster. The unique contribution of this research lies in finding the correlation and importance ranking among different resilience functions, which is crucial for managing a FSC crisis during a natural disaster.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 14 June 2022

Annie Singla and Rajat Agrawal

This study aims to investigate barriers and enablers of social media usage by zooming on one specific type of domain: disaster management. First, by systematically reviewing…

Abstract

Purpose

This study aims to investigate barriers and enablers of social media usage by zooming on one specific type of domain: disaster management. First, by systematically reviewing previous studies using a typology to social media usage, this study identifies the challenges often faced. Second, the results are visualized by qualitatively analyzing the focus group discussion data.

Design/methodology/approach

This paper opted for an inductive thematic approach of grounded theory, including focus group discussion with ten participants from diverse backgrounds working in the disaster domain. The data is transcribed verbatim and coded using Atlas.ti software.

Findings

The findings suggest that the vogue of social media significantly ascends its usage in disaster management. Regulatory, software, physical, authenticity, cultural and demographic rose as challenges for social media usage in disaster management. Findings further indicate enablers as the rise in mobile penetration, democratic participation, increase in living standards, two-way real-time communication, global reach, expeditious decision-making, no space-time constraint and cheaper source of information. Social media, compared to traditional media, is explored. This study has practical implications in helping authorities understand the barriers and enablers for social media usage in disaster management.

Originality/value

Qualitative data analysis of social media usage for disaster management has received scant attention. The main takeaway of this research is to offer clear findings of the purview of social media usage for disaster management. It demonstrates the challenges and enablers of disaster management using social media in the Indian context. Results indicate that leveraging social media for disaster management can extend decision-making for effective disaster management.

Details

Global Knowledge, Memory and Communication, vol. 73 no. 1/2
Type: Research Article
ISSN: 2514-9342

Keywords

Book part
Publication date: 19 March 2024

Catherine Sandoval and Patrick Lanthier

This chapter analyzes the link between the digital divide, infrastructure regulation, and disaster planning and relief through a case study of the flood in San Jose, California…

Abstract

This chapter analyzes the link between the digital divide, infrastructure regulation, and disaster planning and relief through a case study of the flood in San Jose, California triggered by the Anderson dam’s overtopping in February 2017 and an examination of communication failures during the 2018 wildfire in Paradise, California. This chapter theorizes that regulatory decisions construct social and disaster vulnerability. Rooted in the Whole Community approach to disaster planning and relief espoused by the United Nations and the Federal Emergency Management Agency, this chapter calls for leadership to end the digital divide. It highlights the imperative of understanding community information needs and argues for linking strategies to close the digital divide with infrastructure and emergency planning. As the Internet’s integration into society increases, the digital divide diminishes access to societal resources including disaster aid, and exacerbates wildfire, flood, pandemic, and other risks. To mitigate climate change, climate-induced disaster, protect access to social services and the economy, and safeguard democracy, it argues for digital inclusion strategies as a centerpiece of community-centered infrastructure regulation and disaster relief.

Details

Technology vs. Government: The Irresistible Force Meets the Immovable Object
Type: Book
ISBN: 978-1-83867-951-4

Keywords

Open Access
Article
Publication date: 26 March 2024

Luiza Ribeiro Alves Cunha, Adriana Leiras and Paulo Goncalves

Due to the unknown location, size and timing of disasters, the rapid response required by humanitarian operations (HO) faces high uncertainty and limited time to raise funds…

Abstract

Purpose

Due to the unknown location, size and timing of disasters, the rapid response required by humanitarian operations (HO) faces high uncertainty and limited time to raise funds. These harsh realities make HO challenging. This study aims to systematically capture the complex dynamic relationships between operations in humanitarian settings.

Design/methodology/approach

To achieve this goal, the authors undertook a systematic review of the extant academic literature linking HO to system dynamics (SD) simulation.

Findings

The research reviews 88 papers to propose a taxonomy of different topics covered in the literature; a framework represented through a causal loop diagram (CLD) to summarise the taxonomy, offering a view of operational activities and their linkages before and after disasters; and a research agenda for future research avenues.

Practical implications

As the authors provide an adequate representation of reality, the findings can help decision makers understand the problems faced in HO and make more effective decisions.

Originality/value

While other reviews on the application of SD in HO have focused on specific subjects, the current research presents a broad view, summarising the main results of a comprehensive CLD.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 25 March 2024

Hossein Shakibaei, Seyyed Amirmohammad Moosavi, Amir Aghsami and Masoud Rabbani

Throughout human history, the occurrence of disasters has been inevitable, leading to significant human, financial and emotional consequences. Therefore, it is crucial to…

Abstract

Purpose

Throughout human history, the occurrence of disasters has been inevitable, leading to significant human, financial and emotional consequences. Therefore, it is crucial to establish a well-designed plan to efficiently manage such situations when disaster strikes. The purpose of this study is to develop a comprehensive program that encompasses multiple aspects of postdisaster relief.

Design/methodology/approach

A multiobjective model has been developed for postdisaster relief, with the aim of minimizing social dissatisfaction, economic costs and environmental damage. The model has been solved using exact methods for different scenarios. The objective is to achieve the most optimal outcomes in the context of postdisaster relief operations.

Findings

A real case study of an earthquake in Haiti has been conducted. The acquired results and subsequent management analysis have effectively assessed the logic of the model. As a result, the model’s performance has been validated and deemed reliable based on the findings and insights obtained.

Originality/value

Ultimately, the model provides the optimal quantities of each product to be shipped and determines the appropriate mode of transportation. Additionally, the application of the epsilon constraint method results in a set of Pareto optimal solutions. Through a comprehensive examination of the presented solutions, valuable insights and analyses can be obtained, contributing to a better understanding of the model’s effectiveness.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 26 March 2024

Çağla Cergibozan and İlker Gölcük

The study aims to propose a decision-support system to determine the location of a regional disaster logistics warehouse. Emphasizing the importance of disaster logistics, it…

Abstract

Purpose

The study aims to propose a decision-support system to determine the location of a regional disaster logistics warehouse. Emphasizing the importance of disaster logistics, it considers the criteria to be evaluated for warehouse location selection. It is aimed to determine a warehouse location that will serve the disaster victims most efficiently in case of a disaster by making an application for the province of Izmir, where a massive earthquake hit in 2020.

Design/methodology/approach

The paper proposes a fuzzy best–worst method to evaluate the alternative locations for the warehouse. The method considers the linguistic evaluations of the decision-makers and provides an advantage in terms of comparison consistency. The alternatives were identified through interviews and discussions with a group of experts in the fields of humanitarian aid and disaster relief operations. The group consists of academics and a vice-governor, who had worked in Izmir. The results of a previously conducted questionnaire were also used in determining these locations.

Findings

It is shown how the method will be applied to this problem, and the most effective location for the disaster logistics warehouse in Izmir has been determined.

Originality/value

This study contributes to disaster preparedness and brings a solution to the organization of the logistics services in Izmir.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 460