Search results

1 – 10 of over 2000
Article
Publication date: 13 February 2024

Pavankumar Sonawane, Chandrakishor Laxman Ladekar, Ganesh Annappa Badiger and Rahul Arun Deore

Snap fits are crucial in automotive applications for rapid assembly and disassembly of mating components, eliminating the need for fasteners. This study aims to focus on designing…

Abstract

Purpose

Snap fits are crucial in automotive applications for rapid assembly and disassembly of mating components, eliminating the need for fasteners. This study aims to focus on designing and analyzing serviceable cantilever fit snap connections used in automobile plastic components. Snap fits are classified into permanent and semi-permanent fittings, with permanent fittings having a snap clipping angle between 0° and 5° and semi-permanent fittings having a clipping angle between 15° and 45°. Polypropylene random copolymer is chosen for its exceptional fatigue resistance and elasticity.

Design/methodology/approach

The design process includes determining dimensions, computing assembly, disassembly pressures and creating three-dimensional computer-aided design models. Finite element analysis (FEA) is used to evaluate the snap-fit mechanism’s stress, deformation and general functionality in operational scenarios.

Findings

The study develops a modified snap-fit mechanism with decreased bending stress and enhanced mating force optimization. The maximum bending stress during assembly is 16.80 MPa, requiring a mating force of 7.58 N, while during disassembly, it is 37.3 MPa, requiring a mating force of 16.85 N. The optimized parameters significantly improve the performance and dependability of the snap-fit mechanism. The results emphasize the need of taking into account both the assembly and disassembly processes in snap-fit design, because the research demonstrates greater forces during disassembly. The approach developed integrates FEA and design for assembly (DFA) concepts to provide a solution for improving the efficiency and reliability of snap-fit connectors in automotive applications.

Originality/value

The research paper’s distinctiveness comes from the fact that it presents a thorough and realistic viewpoint on snap-fit design, emphasizes material selection, incorporates DFA principles and emphasizes the specific requirements of both assembly and disassembly operations. These discoveries may enhance the efficiency, reliability and sustainability of snap-fit connections in plastic automobile parts and beyond. In conclusion, the idea that disassembly needs to be done with a lot more force than installation in a snap-fit design can have a good effect on buzz, squeak and rattle and noise, vibration and harshness characteristics in automobiles.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 November 2023

Rupinder Singh, Gurwinder Singh and Arun Anand

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an…

Abstract

Purpose

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an Internet of Things (IOT)-based solution.

Design/methodology/approach

The approach used in this study is based on a bibliographic analysis for the re-occurrence of DH in the bovine after surgery. Using SolidWorks and ANSYS, the computer-aided design model of the implant was 3D printed based on literature and discussions on surgical techniques with a veterinarian. To ensure the error-proof design, load test and strain–stress rate analyses with boundary distortion have been carried out for the implant sub-assembly.

Findings

An innovative IOT-based additive manufacturing solution has been presented for the construction of a mesh-type sensor (for the health monitoring of bovine after surgery).

Originality/value

An innovative mesh-type sensor has been fabricated by integration of metal and polymer 3D printing (comprising 17–4 precipitate hardened stainless steel and polyvinylidene fluoride-hydroxyapatite-chitosan) without sacrificing strength and specific absorption ratio value.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 September 2023

Kai Wang and Xiaoping Wang

The curve construction on surfaces is becoming more and more important in computer-aided design (CAD), computer graphics (CG) and the other related fields. This problem is often…

Abstract

Purpose

The curve construction on surfaces is becoming more and more important in computer-aided design (CAD), computer graphics (CG) and the other related fields. This problem is often encountered in NC machining, tool path generation, automated fiber placement and so on. However, designing curves on curved surfaces is quite different from constructing a curve in Euclidean space. Therefore, the traditional methods of curve design are not suitable for constructing a continuous curve on surface. The authors need to perform interpolation directly on surface so that the final target curve is embedded into the given surface and also meets the continuous conditions.

Design/methodology/approach

Firstly, adopting a series of Hermite blending functions, the authors design a space curve passing the given knots on the point-cloud surface. Then, the authors construct a class of directrixes that are adopted to determine vector fields for projection. Finally, a complete G2 continuous curve embedded in point-cloud surfaces is constructed by solving the first-order ordinary differential equations (ODEs).

Findings

The authors’ main contribution is to overcome the problem of constructing G1 and G2 continuous curves on point-cloud surfaces and the authors’ schemes are based on the projection moving least square (MLS) surfaces and traditional differential geometric.

Originality/value

Based on the framework of projection MLS surfaces, a novel method to overcome the problem of constructing G2 continuous curves on point-cloud surfaces is proposed.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 7 December 2023

David P. Baker

A hybrid of architectural design and engineering, architectural engineers (AEs)design and remediate problems with internal and external structures and systems of building and…

Abstract

A hybrid of architectural design and engineering, architectural engineers (AEs)design and remediate problems with internal and external structures and systems of building and facilities in the US. Trained and credentialed in academic programs awarding approximately 1,000 degrees annually, AE is a mid-sized specialty engineering degree comparable to computer software, nuclear, or materials engineering. The case outlines the origins and history of the occupation and illustrates three aspects of the academization process: integration of the university’s charter for knowledge production within an occupation; possibilities for conflict and power within universities that can shape occupational outcomes; and the role of the university and collaborations with practitioners in creating change in theoretical conceptions, on-the-job skills, and problem-solving strategies. AE demonstrates academization in a field with specific physical outcomes and functional requirements that are technically bounded. As counterfactuals, possible alternative occupational paths for the work roles of AEs are considered, along with reasons why they did not happen. What did occur demonstrates the impact of the academization process, with both credentialing and new research. AE is an informative example of constructed functionalism, formed and continually shaped by the university.

Details

How Universities Transform Occupations and Work in the 21st Century: The Academization of German and American Economies
Type: Book
ISBN: 978-1-83753-849-2

Keywords

Article
Publication date: 25 December 2023

Guodong Sa, Haodong Bai, Zhenyu Liu, Xiaojian Liu and Jianrong Tan

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are…

113

Abstract

Purpose

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are based on the rigid body assumption, and those assembly simulation methods considering deformation have a poor efficiency. This paper aims to propose a novel efficient and precise tolerance analysis method based on stable contact to improve the efficiency and reliability of assembly deformation simulation.

Design/methodology/approach

The proposed method comprehensively considers the initial rigid assembly state, the assembly deformation and the stability examination of assembly simulation to improve the reliability of tolerance analysis results. The assembly deformation of mating surfaces was first calculated based on the boundary element method with optimal initial assembly state, then the stability of assembly simulation results was assessed by the density-based spatial clustering of applications with noise algorithm to improve the reliability of tolerance analysis. Finally, combining the small displacement torsor theory, the tolerance scheme was statistically analyzed based on sufficient samples.

Findings

A case study of a guide rail model demonstrated the efficiency and effectiveness of the proposed method.

Research limitations/implications

The present study only considered the form error when generating the skin model shape, and the waviness and the roughness of the matching surface were not considered.

Originality/value

To the best of the authors’ knowledge, the proposed method is original in the assembly simulation considering stable contact, which can effectively ensure the reliability of the assembly simulation while taking into account the computational efficiency.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 16 April 2024

Fathima Sabrina Nazeer, Imriyas Kamardeen and Abid Hasan

Many buildings fail to meet user expectations, causing a performance gap. Pre-occupancy evaluation (PrOE) is believed to have the potential to close the gap. It enables designers…

Abstract

Purpose

Many buildings fail to meet user expectations, causing a performance gap. Pre-occupancy evaluation (PrOE) is believed to have the potential to close the gap. It enables designers to obtain end-user feedback in the design phase and improve the design for better performance. However, PrOE implementation faces challenges due to still maturing knowledgebase. This study aims to understand the state-of-the-art knowledge of PrOE, thereby identifying future research needs to advance the domain.

Design/methodology/approach

A systematic literature review following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) framework was conducted. A thorough search in five databases and Google Scholar retrieved 90 articles, with 30 selected for systematic review after eliminating duplicates and irrelevant articles. Bibliometric analyses were performed using VOSviewer and Biblioshiny on the article metadata, and thematic analyses were conducted on their contents.

Findings

PrOE is a vehicle for engaging building end-users in the design phase to address the credibility gap caused by the discrepancies between the expected and actual performance of buildings. PrOE has gained limited applications in healthcare, residential, office and educational building design for two broad purposes: design management and marketing. Using virtual reality technologies for PrOE has demonstrated significant benefits. Yet, the PrOE domain needs to mature in multiple perspectives to serve its intended purpose effectively.

Originality/value

This study identifies four knowledge gaps for future research to advance the PrOE domain: (1) developing a holistic PrOE framework, integrating comprehensive performance evaluation criteria, useable at different stages of the design phase and multi-criteria decision algorithms, (2) developing a mixed reality tool, embodying the holistic PrOE framework, (3) formulating a PrOE framework for adaptive reuse of buildings and (4) managing uncertainties in user requirements during the lifecycle in PrOE decisions.

Details

Built Environment Project and Asset Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 29 October 2021

Giada Kyaw Oo D’Amore and Francesco Mauro

This study aims to analyze simplified methods for modelling the flow through perforated elements (i.e. porous baffle interface and porous region), searching for a faster and…

Abstract

Purpose

This study aims to analyze simplified methods for modelling the flow through perforated elements (i.e. porous baffle interface and porous region), searching for a faster and easier way to simulate these components. The numerical simulations refer to a muffler geometry available in literature as a case study.

Design/methodology/approach

The installation of scrubber onboard ships to satisfy the International Maritime Organization emissions regulations is a reliable and efficient solution. However, scrubbers have considerable dimensions, interfering with other exhaust line components. Therefore, scrubber installation in the funnels requires integration with other elements, for example, silencers. Perforated pipes and plates represent the main elements of scrubber and silencers. The study of their layout is, therefore, necessary to reduce emissions and noise. Numerical simulations allow evaluating the efficiency of integrated components.

Findings

The study highlights that velocity and pressure predicted by the simplified models have a strong correlation with the resistance coefficients. Even though the simplified models do not accurately reproduce the flow through the holes, the use of such models allows a fast and easy comparison between concurrent muffler geometries, giving aid in the early design phases.

Originality/value

The lack of general guidelines and comparisons in the literature between different modelling strategies of perforated elements supports the novelty of the present work and its impact on design applications. Study the flow inside scrubbers and mufflers is fundamental to evaluate their performances. Therefore, having a simple numerical method is suited for industrial applications during the design process.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 14 January 2022

Femi Emmanuel Adeosun and Ayodeji Emmanuel Oke

In recent times, the construction industry is being influenced by technological innovations when delivering a better, more effective and efficient desired project, cyber-physical…

Abstract

Purpose

In recent times, the construction industry is being influenced by technological innovations when delivering a better, more effective and efficient desired project, cyber-physical systems (CPSs) offer a coupling of the physical and engineered systems by monitoring, coordinating, controlling and integrating their operations. This study aims to examine the level of awareness of professionals and usage of CPSs for construction projects in Nigerian construction industry.

Design/methodology/approach

The target population for this study was the professionals in the construction industry consisting Architects, Quantity Surveyors, Engineers and Builders. Data collection was through the use of a structured questionnaire administered to the target population. The data was analyzed by using statistical tools.

Findings

This study concluded that the construction professionals in the Nigerian construction industry are mostly aware about the heating, ventilation and air conditioning (HVAC) systems, global positioning system, microphone, speakers and camera as the most widely used CPSs in construction industry. HVAC systems was also found to be the mostly adopted technologies in the construction industry.

Originality/value

This study recommended that platforms that increase the awareness and encourage the usage of CPSs in construction industry should be encouraged by stakeholders concerned with management of construction projects. Such include electronic construction and adoption of blockchain technology.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 18 January 2023

Frank Ato Ghansah and Weisheng Lu

Digital twins provide enormous opportunities for smart buildings. However, an up-to-date intellectual landscape to understand and identify the major opportunities of digital twins…

Abstract

Purpose

Digital twins provide enormous opportunities for smart buildings. However, an up-to-date intellectual landscape to understand and identify the major opportunities of digital twins for smart buildings is still not enough. This study, therefore, performs an up-to-date comprehensive literature review to identify the major opportunities of digital twins for smart buildings.

Design/methodology/approach

Scientometric and content analysis are utilised to comprehensively evaluate the intellectual landscape of the general knowledge of digital twins for smart buildings.

Findings

The study uncovered 24 opportunities that were further categorised into four major opportunities: efficient building performance (smart “building” environment), efficient building process (smart construction site environment), information efficiency and effective user interactions. The study further identified the limitations of the existing studies and made recommendations for future research in the methodology adopted and the research domain. Five research domains were considered for future research, namely “real-time data acquisition, processing and storage”, “security and privacy issues”, “standardised and domain modelling”, “collaboration between the building industry and the digital twin developers” and “skilled workforce to enable a seamless transition from theory to practice”.

Practical implications

All stakeholders, including practitioners, policymakers and researchers in the field of “architecture, engineering, construction and operations” (AECO), may benefit from the findings of this study by gaining an in-depth understanding of the opportunities of digital twins and their implementation in smart buildings in the AECO industry. The limitations and the possible research directions may serve as guidelines for streamlining the practical adoption and implementation of digital twins for smart buildings.

Originality/value

This study adopted scientometric and content analysis to comprehensively assess the intellectual landscape of relevant literature and identify four major opportunities of digital twins for smart building, to which scholars have given limited attention. Finally, a research direction framework is presented to address the identified limitations of existing studies and help envision the ideal state of digital twins for smart buildings.

Details

Smart and Sustainable Built Environment, vol. 13 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 4 December 2023

Feifei Zhong, Guoping Liu, Zhenyu Lu, Lingyan Hu, Yangyang Han, Yusong Xiao and Xinrui Zhang

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by…

Abstract

Purpose

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by establishing a dynamic model through the identification of the dynamic parameters of a self-designed robotic arm.

Design/methodology/approach

This study proposes an improved particle swarm optimization (IPSO) method for parameter identification, which comprehensively improves particle initialization diversity, dynamic adjustment of inertia weight, dynamic adjustment of local and global learning factors and global search capabilities. To reduce the number of particles and improve identification accuracy, a step-by-step dynamic parameter identification method was also proposed. Simultaneously, to fully unleash the dynamic characteristics of a robotic arm, and satisfy boundary conditions, a combination of high-order differentiable natural exponential functions and traditional Fourier series is used to develop an excitation trajectory. Finally, an arbitrary verification trajectory was planned using the IPSO to verify the accuracy of the dynamical parameter identification.

Findings

Experiments conducted on a self-designed robotic arm validate the proposed parameter identification method. By comparing it with IPSO1, IPSO2, IPSOd and least-square algorithms using the criteria of torque error and root mean square for each joint, the superiority of the IPSO algorithm in parameter identification becomes evident. In this case, the dynamic parameter results of each link are significantly improved.

Originality/value

A new parameter identification model was proposed and validated. Based on the experimental results, the stability of the identification results was improved, providing more accurate parameter identification for further applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 2000