Search results

1 – 10 of 134
Open Access
Article
Publication date: 17 October 2022

Jesús Miguel Chacón, Javier Sánchez-Reyes, Javier Vallejo and Pedro José Núñez

Non-uniform rational B-splines (NURBSs) are the de facto standard for representing objects in computer-aided design (CAD). The purpose of this paper is to discuss how to stick to…

1282

Abstract

Purpose

Non-uniform rational B-splines (NURBSs) are the de facto standard for representing objects in computer-aided design (CAD). The purpose of this paper is to discuss how to stick to this standard in all phases of the additive manufacturing (AM) workflow, from the CAD object to the final G-code, bypassing unnecessary polygonal approximations.

Design/methodology/approach

The authors use a commercial CAD system (Rhino3D along with its programming environment Grasshopper) for direct slicing of the model, offset generation and trimming. Circular arcs are represented as quadratic NURBSs and free-form geometry as quadratic or cubic polynomial B-splines. Therefore, circular arcs are directly expressible as G2/G3 G-code commands, whereas free-form paths are rewritten as a succession of cubic Bézier curves, thereby admitting exact translation into G5 commands, available in firmware for AM controllers, such as Marlin.

Findings

Experimental results of this paper confirm a considerable improvement in quality over the standard AM workflow, consisting of an initial polygonization of the object (e.g. via standard tessellation language), slicing this polygonal approximation, offsetting the polygonal sections and, finally, generating G-code made up of polyline trajectories (G1 commands).

Originality/value

A streamlined AM workflow is obtained, with a seamless transfer from the initial CAD description to the final G-code. By adhering to the NURBS standard at all steps, the authors avoid multiple representations and associated errors resulting from approximations.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 9 April 2024

Krisztina Demeter, Levente Szász, Béla-Gergely Rácz and Lehel-Zoltán Györfy

The purpose of this paper is to investigate how different manufacturing technologies are bundled together and how these bundles influence operations performance and, indirectly…

Abstract

Purpose

The purpose of this paper is to investigate how different manufacturing technologies are bundled together and how these bundles influence operations performance and, indirectly, business performance. With the emergence of Industry 4.0 (I4.0) technologies, manufacturing companies can use a wide variety of advanced manufacturing technologies (AMT) to build an efficient and effective production system. Nevertheless, the literature offers little guidance on how these technologies, including novel I4.0 technologies, should be combined in practice and how these combinations might have a different impact on performance.

Design/methodology/approach

Using a survey study of 165 manufacturing plants from 11 different countries, we use factor analysis to empirically derive three distinct manufacturing technology bundles and structural equation modeling to quantify their relationship with operations and business performance.

Findings

Our findings support an evolutionary rather than a revolutionary perspective. I4.0 technologies build on traditional manufacturing technologies and do not constitute a separate direction that would point towards a fundamental digital transformation of companies within our sample. Performance effects are rather weak: out of the three technology bundles identified, only “automation and robotization” have a positive influence on cost efficiency, while “base technologies” and “data-enabled technologies” do not offer a competitive advantage, neither in terms of cost nor in terms of differentiation. Furthermore, while the business performance impact is positive, it is quite weak, suggesting that financial returns on technology investments might require longer time periods.

Originality/value

Relying on a complementarity approach, our research offers a novel perspective on technology implementation in the I4.0 era by investigating novel and traditional manufacturing technologies together.

Details

Journal of Manufacturing Technology Management, vol. 35 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 14 October 2021

Anton Wiberg, Johan Persson and Johan Ölvander

The purpose of this paper is to present a Design for Additive Manufacturing (DfAM) methodology that connects several methods, from geometrical design to post-process selection…

1897

Abstract

Purpose

The purpose of this paper is to present a Design for Additive Manufacturing (DfAM) methodology that connects several methods, from geometrical design to post-process selection, into a common optimisation framework.

Design/methodology/approach

A design methodology is formulated and tested in a case study. The outcome of the case study is analysed by comparing the obtained results with alternative designs achieved by using other design methods. The design process in the case study and the potential of the method to be used in different settings are also discussed. Finally, the work is concluded by stating the main contribution of the paper and highlighting where further research is needed.

Findings

The proposed method is implemented in a novel framework which is applied to a physical component in the case study. The component is a structural aircraft part that was designed to minimise weight while respecting several static and fatigue structural load cases. An addition goal is to minimise the manufacturing cost. Designs optimised for manufacturing by two different AM machines (EOS M400 and Arcam Q20+), with and without post-processing (centrifugal finishing) are considered. The designs achieved in this study show a significant reduction in both weight and cost compared to one AM manufactured geometry designed using more conventional methods and one design milled in aluminium.

Originality/value

The method in this paper allows for the holistic design and optimisation of components while considering manufacturability, cost and component functionality. Within the same framework, designs optimised for different setups of AM machines and post-processing can be automatically evaluated without any additional manual work.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 27 June 2023

Farid Salari, Paolo Bosetti and Vincenzo M. Sglavo

Particles bed binding by selective cement activation (SCA) method is a computer-aided manufacturing (CAM) technique used to produce cementitious elements. A computer-aided design…

Abstract

Purpose

Particles bed binding by selective cement activation (SCA) method is a computer-aided manufacturing (CAM) technique used to produce cementitious elements. A computer-aided design file is sliced to generate G-codes before printing. This paper aims to study the effect of key input parameters for slicer software on the final properties of printed products.

Design/methodology/approach

The one factor at a time (OFAT) methodology is used to investigate the impact of selected parameters on the final properties of printed specimens, and the causes for the variations in outcomes of each variable are discussed.

Findings

Finer aggregates can generate a more compact layer, resulting in a denser product with higher strength. Fluid pressure is directly determined by voxel rate (rV); however, high pressures enable better fluid penetration control for fortified products; for extreme rVs, residual voids in the interfaces between successive layers and single-line primitives impair mechanical strength. It was understood that printhead movement along the orientation of the parts in the powder bed improved the mechanical properties.

Originality/value

The design of experiment (DOE) method assesses the influence of process parameters on various input printing variables at the same time. As the resources are limited, a fractional factorial plan is carried out on a subset of a full factorial design; hence, providing physical interpretation behind changes in each factor is difficult. OFAT aids in analyzing the effect of a change in one factor on output while all other parameters are kept constant. The results assist engineers in properly considering the influence of variable variations for future DOE designs.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 31 March 2020

Veera Pandiyan Kaliani Sundram, Prem Chhetri and Atika Shamsul Bahrin

This paper presents the concerns in manufacturing supply chain. Further this study investigates the role of information technology (IT) and information sharing (IS) in…

1909

Abstract

This paper presents the concerns in manufacturing supply chain. Further this study investigates the role of information technology (IT) and information sharing (IS) in manufacturing supply chain and determines its impact towards supply chain integration (SCI), supply chain performance (SCP), and manufacturing firm performance (FP) in Malaysia. The theoretical framework was proposed for the study on the basis of existing literature. The study administered a survey questionnaire to collect data from manufacturing firms in Malaysia with 112 respondents. A multiple regression analysis is conducted to establish the relationship between IT, IS, SCI, and FP. The study finds that IT and sharing has significant positive effect towards and performance. Firms that use IT and practice IS across partners in the supply chain are more likely to integrate their internal and external value chain for better performance both within and across the manufacturing firms in the supply chain. This study can be of interest to the manufacturing industry as well as other industry practitioners interested in improving the performance of the organization and supply chain in total. For supply chain practitioners, this results indicate that the firms should adopt IT and IS practices to strategically improve SCI. This in turn will also improve the supply chain network and firm’s performance. This study employs a newly developed framework which depicts the causal relationship between IT, IS, SCI, Supply Chain Performance, and FP in Malaysia. Furthermore, it closes a gap in existing literature by examining the effect IT and communication (ICT) practices toward manufacturing firms’ performance and SCP in a single setting. In addition, the current study attempted to construct a model which would estimate and interpret SCP and FP simultaneously, and to evaluate this model in an empirical fashion.

Details

Journal of International Logistics and Trade, vol. 18 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 20 December 2021

Marco Bettiol, Mauro Capestro, Eleonora Di Maria and Stefano Micelli

Industry 4.0 technologies are promising to increase manufacturing companies' performance through the new knowledge that such digital technologies allow to create and manage within…

2622

Abstract

Purpose

Industry 4.0 technologies are promising to increase manufacturing companies' performance through the new knowledge that such digital technologies allow to create and manage within the firm boundaries and through customer interactions. Despite the great attention on the Industry 4.0 adoption paths, little is known about the relationships with previous waves of digital technologies, namely, information and communication technologies (ICTs), and how different groups of both types of technologies link to knowledge and its related performances.

Design/methodology/approach

The study employed a quantitative research design using a survey method. Submitting the questionnaire to entrepreneurs, chief operation officers or managers in charge of the operational and technological processes of Italian manufacturing firms, 206 respondents stated that their firm has adopted at least one of the seven Industry 4.0 technologies investigated.

Findings

The findings of the study highlight the positive relationship between ICT and Industry 4.0 technologies in terms of both intensity and groups of technologies (Web-based, Management and Manufacturing ICT; Operation, Customization and Data-processing 4.0), and how technologies affect knowledge-related performances in terms of products and processes, job-learning, product-related services and customer involvement.

Originality/value

This study is one of the first attempts to link groups of ICT to groups of Industry 4.0 technologies and to explore the effects in terms of knowledge-related performances as a measure of technology use. The study shows strong path dependency among ICT, Industry 4.0 and knowledge performance, enriching the literature on technological innovation and knowledge management.

Details

International Journal of Productivity and Performance Management, vol. 71 no. 4
Type: Research Article
ISSN: 1741-0401

Keywords

Open Access
Article
Publication date: 9 February 2024

Martin Novák, Berenika Hausnerova, Vladimir Pata and Daniel Sanetrnik

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass…

Abstract

Purpose

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass production implemented using PIM. Thus, the surface properties and mechanical performance of parts produced using powder/polymer binder feedstocks [material extrusion (MEX) and PIM] were investigated and compared with powder manufacturing based on direct metal laser sintering (DMLS).

Design/methodology/approach

PIM parts were manufactured from 17-4PH stainless steel PIM-quality powder and powder intended for powder bed fusion compounded with a recently developed environmentally benign binder. Rheological data obtained at the relevant temperatures were used to set up the process parameters of injection molding. The tensile and yield strengths as well as the strain at break were determined for PIM sintered parts and compared to those produced using MEX and DMLS. Surface properties were evaluated through a 3D scanner and analyzed with advanced statistical tools.

Findings

Advanced statistical analyses of the surface properties showed the proximity between the surfaces created via PIM and MEX. The tensile and yield strengths, as well as the strain at break, suggested that DMLS provides sintered samples with the highest strength and ductility; however, PIM parts made from environmentally benign feedstock may successfully compete with this manufacturing route.

Originality/value

This study addresses the issues connected to the merging of two environmentally efficient processing routes. The literature survey included has shown that there is so far no study comparing AM and PIM techniques systematically on the fixed part shape and dimensions using advanced statistical tools to derive the proximity of the investigated processing routes.

Open Access
Article
Publication date: 16 December 2021

Ting Zheng, Marco Ardolino, Andrea Bacchetti and Marco Perona

This paper has two objectives: first, to investigate the state-of-the-art of Industry 4.0 (I4.0) adoption in Italian manufacturing firms and, second, to understand variations in…

2630

Abstract

Purpose

This paper has two objectives: first, to investigate the state-of-the-art of Industry 4.0 (I4.0) adoption in Italian manufacturing firms and, second, to understand variations in technologies implemented and business functions involved, benefits perceived, and obstacles encountered in I4.0 implementation over a three-year period.

Design/methodology/approach

The approach adopted in this research is descriptive, nesting longitudinal features. The paper presents a descriptive survey of 102 Italian manufacturing companies. The authors also evaluated non-response biases. The longitudinal approach was achieved by comparing the responses of the 40 sub-samples in common with a second similar survey launched three years prior, which aimed to identify patterns of evolution in the adoption of the I4.0 paradigm.

Findings

Survey findings demonstrate that Italian manufacturing companies still have limited awareness of I4.0 technologies, and the adoption of I4.0 technologies differs per technology. Company size and information system coverage level are the two factors that impact the company's technology adoption level. The comparative study shows that knowledge and adoption increase in a three-year interval with an unbalanced involvement of business functions regarding the I4.0 transformation. Indeed, companies are still seeking I4.0 solutions to reduce costs and lead times primarily, and the benefits perceived by companies are shown to be related to the number of I4.0 technologies in use. Finally, when companies put the I4.0 technologies into practice, competence is constantly considered the most significant barrier.

Research limitations/implications

This paper aims at conducting a thorough investigation into the development of I4.0 adoption in manufacturing companies. The main limitation of this study concerns the limited number of subjects involved in the longitudinal study (40) and the focus on a limited geographical area (Italy). In addition, more I4.0 technologies could also be incorporated into the survey protocol to gain further insight into I4.0 development.

Originality/value

The authors provide one of the first attempts to assess the variations of I4.0 implementation concerning technology adoption, business function involvement, and the alteration of benefits and obstacles. Several studies presented in the literature highlight the lack of longitudinal studies investigating the development of the I4.0 paradigm in a specific manufacturing context: this paper is the attempt at filling this gap.

Details

Benchmarking: An International Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 7 June 2021

Changyang Li, Huapeng Wu, Harri Eskelinen and Haibiao Ji

This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in…

Abstract

Purpose

This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in fusion reactor. Detailed mechanical design of the robot is presented and both the kinematic and dynamic behaviors are studied.

Design/methodology/approach

First, the model of the mobile parallel robot was created in computer-aided design (CAD) software, then the simulation and optimization of the robot were completed to meet the design requirements. Then the robot was manufactured and assembled. Finally, the machining and tungsten inert gas (TIG) welding tests were performed for validation.

Findings

Currently, the implementation of the robot system has been successfully carried out in the laboratory. The excellent performance has indicated that the robot’s mechanical and software designs are suitable for the given tasks. The quality and accuracy of welding and machining has reached the requirements.

Originality/value

This mobile parallel industrial robot is particularly used in fusion reactor. Furthermore, the structure of the mobile parallel robot can be optimized for different applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 5 May 2022

Mario Tani, Ciro Troise, Paola De Bernardi and Tian Han

Additive manufacturing (AM) technologies, also known as three-dimensional printing (3DP), is a technological breakthrough that have the potential to disrupt the traditional…

Abstract

Purpose

Additive manufacturing (AM) technologies, also known as three-dimensional printing (3DP), is a technological breakthrough that have the potential to disrupt the traditional operations of supply chains. They open the way to a supply chains innovation that can significantly benefit hospitals and health-related organizations in dealing with crises or unexpected events in a faster and more flexible way. In this study the authors identify the boundary of this potential support.

Design/methodology/approach

The authors adopt a case study approach to understand the dynamics behind a well-known best practice to identify the main opportunities and the main pitfalls that AM may pose to health-related organizations wanting to leverage them.

Findings

The case highlights that it is possible to increase hospital flexibility using AM and that by leveraging the Internet it is possible to spread the benefits faster than what it would be normally possible using traditional supply chain processes. At the same time the case highlights that leveraging these technologies needs buy-in from all the relevant stakeholders.

Originality/value

The paper is one of the first, to the best of the authors' knowledge, to highlight the main opportunities and difficulties of implementing 3DP technologies in hospital supply chain management.

Details

European Journal of Innovation Management, vol. 25 no. 6
Type: Research Article
ISSN: 1460-1060

Keywords

1 – 10 of 134