Search results

1 – 10 of over 1000
Article
Publication date: 11 October 2011

Jiang Shu, Layne T. Watson, Naren Ramakrishnan, Frederick A. Kamke and Shubhangi Deshpande

This paper describes a practical approach to implement computational steering for problem solving environments (PSEs) by using WBCSim as an example. WBCSim is a Web based…

Abstract

Purpose

This paper describes a practical approach to implement computational steering for problem solving environments (PSEs) by using WBCSim as an example. WBCSim is a Web based simulation system designed to increase the productivity of wood scientists conducting research on wood‐based composites manufacturing processes. WBCSim serves as a prototypical example for the design, construction, and evaluation of small‐scale PSEs.

Design/methodology/approach

Various changes have been made to support computational steering across the three layers – client, server, developer – comprising the WBCSim system. A detailed description of the WBCSim system architecture is presented, along with a typical scenario of computational steering usage.

Findings

The set of changes and components are: design and add a very simple steering module at the legacy simulation code level, provide a way to monitor simulation execution (alert users when it is time to steer), add an interface to access and visualize simulation results, and perhaps to compare intermediate results across multiple steering attempts. These simple changes and components have a relatively low cost in terms of increasing software complexity.

Originality/value

The novelty lies in designing and implementing a practical approach to enable computational steering capability for PSEs embedded with legacy simulation code.

Article
Publication date: 1 May 2001

Ahmed K. Noor and Tamer M. Wasfy

An object‐oriented event‐driven immersive virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a…

Abstract

An object‐oriented event‐driven immersive virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screen(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A “container” object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiment’s procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk‐free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

Details

Engineering Computations, vol. 18 no. 3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1989

STELLAR Computer Inc. today introduced the Application Visualization System (AVS), a next‐generation software system for rapid, easy visualization of scientific and engineering…

Abstract

STELLAR Computer Inc. today introduced the Application Visualization System (AVS), a next‐generation software system for rapid, easy visualization of scientific and engineering data. Ian Edmonds, Stellar's Corporate Vice President of Marketing, stated “With the announcement of AVS, Stellar has shifted the playing field: instead of wrestling with graphics programming interface standards such as PHIGS and GKS or proprietary interfaces such as GL2 and DORE™, customers now have the solution they were looking for all the time—graphics supercomputing without graphics programming”.

Details

Aircraft Engineering and Aerospace Technology, vol. 61 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 10 July 2009

André Buchau, Wolfgang M. Rucker, Uwe Wössner and Martin Becker

The purpose of this paper is to present an application of augmented reality (AR) in the context of teaching of electrodynamics. The AR visualization technique is applied to…

1207

Abstract

Purpose

The purpose of this paper is to present an application of augmented reality (AR) in the context of teaching of electrodynamics. The AR visualization technique is applied to electromagnetic fields. Carrying out of numerical simulations as well as preparation of the AR display is shown. Presented examples demonstrate an application of this technique in teaching of electrodynamics.

Design/methodology/approach

The 3D electromagnetic fields are computed with the finite element method (FEM) and visualized with an AR display.

Findings

AR is a vivid method for visualization of electromagnetic fields. Students as well as experts can easily connect the characteristics of the fields with the physical object.

Research limitations/implications

The focus of the presented work has been on an application of AR in a lecture room. Then, easy handling of a presentation among with low‐hardware requirements is important.

Practical implications

The presented approach is based on low‐hardware requirements. Hence, a presentation of electromagnetic fields with AR in a lecture room can be easily done. AR helps students to understand electromagnetic field theory.

Originality/value

Well‐known methods like FEM and AR have been combined to develop a visualization technique for electromagnetic fields, which can be easily applied in a lecture room.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 September 2013

Alexander Sommer, Ortwin Farle and Romanus Dyczij-Edlinger

The article aims to present an efficient numerical method for computing the far-fields of phased antenna arrays over broad frequency bands as well as wide ranges of steering and…

Abstract

Purpose

The article aims to present an efficient numerical method for computing the far-fields of phased antenna arrays over broad frequency bands as well as wide ranges of steering and look angles.

Design/methodology/approach

The suggested approach combines finite-element analysis, projection-based model-order reduction, and empirical interpolation.

Findings

The reduced-order models are highly accurate but significantly smaller than the underlying finite-element models. Thus, they enable a highly efficient numerical far-field computation of phased antenna arrays. The frequency-slicing greedy method proposed in this paper greatly reduces the computational costs for constructing the reduced-order models, compared to state-of-the-art methods.

Research limitations/implications

The frequency-slicing greedy method is intended for use with matrix factorization methods. It is not applicable when the underlying finite-element system is solved by iterative methods.

Practical implications

In contrast to conventional finite-element models of phased antenna arrays, reduced-order models are very cheap to evaluate. Hence, they provide an enabling technology for computing radiation patterns over broad frequency bands and wide ranges of steering angles.

Originality/value

The paper presents a two-step model-order reduction method for efficiently computing the far-field patterns of phased antenna arrays. The suggested frequency-slicing greedy method constructs the reduced-order models in a systematic fashion and improves computing times, compared to existing methods.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 August 2010

M. Grujicic, H. Marvi, G. Arakere, W.C. Bell and I. Haque

A parallel finite‐element/multi‐body‐dynamics investigation is carried out of the effect of up‐armoring on the off‐road performance of a prototypical high‐mobility…

Abstract

Purpose

A parallel finite‐element/multi‐body‐dynamics investigation is carried out of the effect of up‐armoring on the off‐road performance of a prototypical high‐mobility multipurpose‐wheeled vehicle (HMMWV). The paper seeks to investigate the up‐armoring effect on the vehicle performance under the following off‐road maneuvers: straight‐line flatland braking; straight‐line off‐angle downhill braking; and sharp left turn.

Design/methodology/approach

For each of the above‐mentioned maneuvers, the appropriate vehicle‐performance criteria are identified and the parameters used to quantify these criteria are defined and assessed. The ability of a computationally efficient multi‐body dynamics approach when combined with a detailed model for tire/soil interactions to yield results qualitatively and quantitatively consistent with their computational counterparts obtained using computationally quite costly finite element analyses is assessed.

Findings

The computational results obtained clearly reveal the compromises in vehicle off‐road performance caused by the up‐armoring employ to improve vehicle blast and ballistic protection performance/survivability. The results obtained are also analyzed and explained in terms of general field‐test observations in order to judge physical soundness and fidelity of the present computational approaches.

Originality/value

The paper offers insights into the effects of up‐armoring of the HMMWV on off‐road vehicle performance.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 May 2020

Haojie Zhang, Yudong Zhang and Tiantian Yang

As wheeled mobile robots find increasing use in outdoor applications, it becomes more important to reduce energy consumption to perform more missions efficiently with limit energy…

Abstract

Purpose

As wheeled mobile robots find increasing use in outdoor applications, it becomes more important to reduce energy consumption to perform more missions efficiently with limit energy supply. The purpose of this paper is to survey the current state-of-the-art on energy-efficient motion planning (EEMP) for wheeled mobile robots.

Design/methodology/approach

The use of wheeled mobile robots has been increased to replace humans in performing risky missions in outdoor applications, and the requirement of motion planning with efficient energy consumption is necessary. This study analyses a lot of motion planning technologies in terms of energy efficiency for wheeled mobile robots from 2000 to present. The dynamic constraints play a key role in EEMP problem, which derive the power model related to energy consumption. The surveyed approaches differ in the used steering mechanisms for wheeled mobile robots, in assumptions on the structure of the environment and in computational requirements. The comparison among different EEMP methods is proposed in optimal, computation time and completeness.

Findings

According to lots of literature in EEMP problem, the research results can be roughly divided into online real-time optimization and offline optimization. The energy consumption is considered during online real-time optimization, which is computationally expensive and time-consuming. The energy consumption model is used to evaluate the candidate motions offline and to obtain the optimal energy consumption motion. Sometimes, this optimization method may cause local minimal problem and even fail to track. Therefore, integrating the energy consumption model into the online motion planning will be the research trend of EEMP problem, and more comprehensive approach to EEMP problem is presented.

Research limitations/implications

EEMP is closely related to robot’s dynamic constraints. This paper mainly surveyed in EEMP problem for differential steered, Ackermann-steered, skid-steered and omni-directional steered robots. Other steering mechanisms of wheeled mobile robots are not discussed in this study.

Practical implications

The survey of performance of various EEMP serves as a reference for robots with different steering mechanisms using in special scenarios.

Originality/value

This paper analyses a lot of motion planning technologies in terms of energy efficiency for wheeled mobile robots from 2000 to present.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 November 2016

Michail G. Christodoulou, Antonios X. Lalas, Nikolaos V. Kantartzis and Theodoros D. Tsiboukis

Metamaterials have been utilised in several exciting configurations such as tuneable reflectors, reconfigurable absorbers, and programmable modulators, triggering intense research…

Abstract

Purpose

Metamaterials have been utilised in several exciting configurations such as tuneable reflectors, reconfigurable absorbers, and programmable modulators, triggering intense research efforts. Among them, the ability to steer the radiation pattern of a single antenna component by employing a metamaterial-based superstrate is considered crucial for the development of advanced beam forming applications. The purpose of this paper is to introduce an adjustable omega-inspired metamaterial module to facilitate the design of beam steering implementations, involving beam forming capabilities, as well.

Design/methodology/approach

A variable capacitive diode is properly positioned at the novel omega element, hence advancing the controllability of its electromagnetic performance and circumventing the requirement of extra bias networks. When an array of these particles is placed in front of an antenna, several negative refractive index profiles can be realised, allowing the manipulation of the beam direction. Furthermore, a pyramidal horn antenna, loaded with this complex medium superstrate, is thoroughly investigated in terms of programmable beam steering and beam forming attributes. Several numerical data derived via the finite element method unveil the merits of the featured configuration.

Findings

The proposed structure allows programmability of the electromagnetic behaviour, but also circumvents the necessity of complicated bias networks, while minimising interference. The numerical assessment of a standard gain pyramidal horn antenna, associated to the featured metamaterial superstrate, sufficiently proves the controllable beam steering and beam forming attributes. Several parametric studies clarify the principal characteristics of the proposed setup, facilitating the design of high-end systems.

Originality/value

Development of tuneable metamaterial, which utilises variable capacitive diodes to enable controllability. Incorporation of reconfigurable metamaterials into antenna technology. Design of a pyramidal horn antenna, loaded with a complex medium superstrate exhibiting programmable beam steering and beam forming attributes. The proposed device circumvents the necessity of complicated bias networks, while minimising interference.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 June 2021

Javad Tayebi, Chao Han and Yuanjin Yu

The purpose of this paper is agile attitude control design with the novel three-dimensional (3D) magnetically suspended wheel (MSW) that is the preferred type for agile…

83

Abstract

Purpose

The purpose of this paper is agile attitude control design with the novel three-dimensional (3D) magnetically suspended wheel (MSW) that is the preferred type for agile maneuvering compared to conventional control moment gyro due to frictionless, low vibration and long lifetime. This system does not require a separate steering law for pyramid arrangement to derive tilt angles. It is also conducting an agile maneuver with high accuracy despite the high-frequency disturbances.

Design/methodology/approach

In this paper, a disturbance observer-based attitude stabilization method is proposed for an agile satellite with a pyramid cluster of the novel 3D magnetically suspended wheel actuator. This strategy includes a disturbance observer and a linear quadratic regulator controller. The rotor shaft deflection of MSW is actively controlled to reduce vibration and producing gyro torque. The deflection angle of the pyramid cluster MSWs considered as control parameters. The closed-loop stability is proved by using the Lyapunov strategy. The efficiency and performance of the offered method verified by numerical simulation via MATLAB/SIMULINK software.

Findings

According to simulation results, the disturbance observer-based control controller stabilized the system with high accuracy and optimal tilt angles without any extra steering law equation. Hence, the system speed is increased, and the system error is minimized without separate steering law.

Practical implications

The magnetically suspended wheel is a new kind of inertia actuator for attitude control that has several benefits such as frictionless, high-speed rotor, clean environment and low vibration compared to the traditional wheel. It has complex nonlinear dynamics that cause have complicated controller design. The proposed strategy stabilizes the system and conducting an agile maneuver with high precision despite the high-frequency disturbances. It is applicable for some missions requiring high accuracies, like Earth observation and the solar observation mission that require a very accurate pointing control and a long lifetime.

Originality/value

This paper is the initial paper to design a pyramid array for magnetically suspended wheels. Compared to other research, this method doesn’t need a separate steering law of the MSWs cluster and presented optimal tilt angles with less computational. Also, it designs a disturbance observer-based controller for this system that proposed high accuracy and agile stabilization.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 January 2022

Christos P. Exadaktylos, Dimitrios I. Karatzidis, Theodoros T. Zygiridis and Nikolaos V. Kantartzis

A class of robust and efficient beamforming methods is developed in this paper for the optimised design of realistic microstrip antennas on arbitrarily curved substrates. More…

Abstract

Purpose

A class of robust and efficient beamforming methods is developed in this paper for the optimised design of realistic microstrip antennas on arbitrarily curved substrates. More specifically, this paper aims to focus on the formulation of an effective and computationally light beamforming algorithm and its implementation on a novel realistic cylindrical-substrate microstrip array antenna with significantly decreased size, wideband operation and enhanced radiation characteristics.

Design/methodology/approach

The proposed multi-parametric schemes introduce an efficient null-steering concept, which drastically annihilates the undesired beamformer waveform artefacts, while retaining the real output signal undistorted. In particular, the key objective is the accurate calculation of the appropriate complex feeding weights, required to set nulls along the propagation directions of the unwanted signals and a maximum towards the propagation direction of the desired incoming signal. The featured technique, combined with a modified finite element method, is applied to the design of a new family of cylindrical-substrate microstrip array antennas.

Findings

Numerical results, mainly concerning customisable three-dimensional radiation patterns and attributes, certify the merits of the algorithm and its limited system demands. The introduced beamforming algorithms are applied to a variety of different inputs (desired radiation patterns), which indicate that the designed cylindrical-substrate antenna overwhelms existing designs in terms of computational cost for the beamforming algorithm, while retaining acceptable values for radiation characteristics, such as gain, directivity and side-lobe suppression. In this manner, the effectiveness of the prior methodology and the benefits of this newly shaped array antenna are comprehensively revealed and substantiated.

Originality/value

Rigorous beamforming techniques in conjunction with a class of contemporary array antennas are developed for potential use in high-end communication systems, such as 5G configurations. The proposed cylindrical-shaped structures are systematically designed, with an emphasis on space efficiency and wideband radiation effectiveness to offer fully adjustable setups. To this aim, the cylindrical-substrate microstrip antenna, because of its inherent azimuthal symmetry and confined overall dimensions, provides reliable operation and promising performance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000