Search results

1 – 10 of over 14000
Article
Publication date: 11 October 2011

Jiang Shu, Layne T. Watson, Naren Ramakrishnan, Frederick A. Kamke and Shubhangi Deshpande

This paper describes a practical approach to implement computational steering for problem solving environments (PSEs) by using WBCSim as an example. WBCSim is a Web based…

Abstract

Purpose

This paper describes a practical approach to implement computational steering for problem solving environments (PSEs) by using WBCSim as an example. WBCSim is a Web based simulation system designed to increase the productivity of wood scientists conducting research on wood‐based composites manufacturing processes. WBCSim serves as a prototypical example for the design, construction, and evaluation of small‐scale PSEs.

Design/methodology/approach

Various changes have been made to support computational steering across the three layers – client, server, developer – comprising the WBCSim system. A detailed description of the WBCSim system architecture is presented, along with a typical scenario of computational steering usage.

Findings

The set of changes and components are: design and add a very simple steering module at the legacy simulation code level, provide a way to monitor simulation execution (alert users when it is time to steer), add an interface to access and visualize simulation results, and perhaps to compare intermediate results across multiple steering attempts. These simple changes and components have a relatively low cost in terms of increasing software complexity.

Originality/value

The novelty lies in designing and implementing a practical approach to enable computational steering capability for PSEs embedded with legacy simulation code.

Article
Publication date: 4 November 2014

Mica Grujicic, Jennifer Snipes, S. Ramaswami and Fadi Abu-Farha

The purpose of this paper is to propose a computational approach in order to help establish the effect of various self-piercing rivet (SPR) process and material parameters on the…

Abstract

Purpose

The purpose of this paper is to propose a computational approach in order to help establish the effect of various self-piercing rivet (SPR) process and material parameters on the quality and the mechanical performance of the resulting SPR joints.

Design/methodology/approach

Toward that end, a sequence of three distinct computational analyses is developed. These analyses include: (a) finite-element modeling and simulations of the SPR process; (b) determination of the mechanical properties of the resulting SPR joints through the use of three-dimensional, continuum finite-element-based numerical simulations of various mechanical tests performed on the SPR joints; and (c) determination, parameterization and validation of the constitutive relations for the simplified SPR connectors, using the results obtained in (b) and the available experimental results. The availability of such connectors is mandatory in large-scale computational analyses of whole-vehicle crash or even in simulations of vehicle component manufacturing, e.g. car-body electro-coat paint-baking process. In such simulations, explicit three-dimensional representation of all SPR joints is associated with a prohibitive computational cost.

Findings

It is found that the approach developed in the present work can be used, within an engineering optimization procedure, to adjust the SPR process and material parameters (design variables) in order to obtain a desired combination of the SPR-joint mechanical properties (objective function).

Originality/value

To the authors’ knowledge, the present work is the first public-domain report of the comprehensive modeling and simulations including: self-piercing process; virtual mechanical testing of the SPR joints; and derivation of the constitutive relations for the SPR connector elements.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 April 2020

Wienczyslaw Stalewski and Katarzyna Surmacz

This paper aims to present the novel methodology of computational simulation of a helicopter flight, developed especially to investigate the vortex ring state (VRS) – a dangerous…

Abstract

Purpose

This paper aims to present the novel methodology of computational simulation of a helicopter flight, developed especially to investigate the vortex ring state (VRS) – a dangerous phenomenon that may occur in helicopter vertical or steep descent. Therefore, the methodology has to enable modelling of fast manoeuvres of a helicopter such as the entrance in and safe escape from the VRS. The additional purpose of the paper is to discuss the results of conducted simulations of such manoeuvres.

Design/methodology/approach

The developed methodology joins several methods of computational fluid dynamics and flight dynamic. The approach consists of calculation of aerodynamic forces acting on rotorcraft, by solution of the unsteady Reynold-averaged Navier–Stokes (URANS) equations using the finite volume method. In parallel, the equations of motion of the helicopter and the fluid–structure-interaction equations are solved. To reduce computational costs, the flow effects caused by rotating blades are modelled using a simplified approach based on the virtual blade model.

Findings

The developed methodology of computational simulation of fast manoeuvres of a helicopter may be a valuable and reliable tool, useful when investigating the VRS. The presented results of conducted simulations of helicopter manoeuvres qualitatively comply with both the results of known experimental studies and flight tests.

Research limitations/implications

The continuation of the presented research will primarily include quantitative validation of the developed methodology, with respect to well-documented flight tests of real helicopters.

Practical implications

The VRS is a very dangerous phenomenon that usually causes a sudden decrease of rotor thrust, an increase of the descent rate, deterioration of manoeuvrability and deficit of power. Because of this, it is difficult and risky to test the VRS during the real flight tests. Therefore, the reliable computer simulations performed using the developed methodology can significantly contribute to increase helicopter flight safety.

Originality/value

The paper presents the innovative and original methodology for simulating fast helicopter manoeuvres, distinguished by the original approach to flight control as well as the fact that the aerodynamic forces acting on the rotorcraft are calculated during the simulation based on the solution of URANS equations.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 November 2020

Emmanuel Imuetinyan Aghimien, Lerato Millicent Aghimien, Olutomilayo Olayemi Petinrin and Douglas Omoregie Aghimien

This paper aims to present the result of a scientometric analysis conducted using studies on high-performance computing in computational modelling. This was done with a view to…

Abstract

Purpose

This paper aims to present the result of a scientometric analysis conducted using studies on high-performance computing in computational modelling. This was done with a view to showcasing the need for high-performance computers (HPC) within the architecture, engineering and construction (AEC) industry in developing countries, particularly in Africa, where the use of HPC in developing computational models (CMs) for effective problem solving is still low.

Design/methodology/approach

An interpretivism philosophical stance was adopted for the study which informed a scientometric review of existing studies gathered from the Scopus database. Keywords such as high-performance computing, and computational modelling were used to extract papers from the database. Visualisation of Similarities viewer (VOSviewer) was used to prepare co-occurrence maps based on the bibliographic data gathered.

Findings

Findings revealed the scarcity of research emanating from Africa in this area of study. Furthermore, past studies had placed focus on high-performance computing in the development of computational modelling and theory, parallel computing and improved visualisation, large-scale application software, computer simulations and computational mathematical modelling. Future studies can also explore areas such as cloud computing, optimisation, high-level programming language, natural science computing, computer graphics equipment and Graphics Processing Units as they relate to the AEC industry.

Research limitations/implications

The study assessed a single database for the search of related studies.

Originality/value

The findings of this study serve as an excellent theoretical background for AEC researchers seeking to explore the use of HPC for CMs development in the quest for solving complex problems in the industry.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 May 1994

M.M. De Guzman, C.A.J. Fletcher and J.D. Hooper

The detailed flow behaviour around a four—hole Cobra Pitot pressureprobe, developed by the Commonwealth Scientific and Industrial ResearchOrganization, Australia, (CSIRO), to…

Abstract

The detailed flow behaviour around a four—hole Cobra Pitot pressure probe, developed by the Commonwealth Scientific and Industrial Research Organization, Australia, (CSIRO), to determine the pressure and the velocity components in three dimensional single‐phase/multi‐phase fluid flow, is investigated computationally. The incompressible steady state Navier—Stokes equations are solved numerically using a general purpose computational fluid dynamics (CFD) code developed at CANCES. Computational results are presented for representative probe pitch and yaw angles at a Reynolds number = 2 × 103, emphasising the pressure distribution and flow separation patterns on the probe tip adjacent to the pressure ports. Quantitative comparison of the computational simulation to experimental results is done by comparing experimental calibration data to numerically computed pressure responses. The topological features of the near tip flow behaviour are visualised using critical point concepts and three dimensional streamlines. Additional qualitative comparison to experiment is discussed using data from a preliminary experimental investigation using surface oil film visualisation techniques, where available. Conclusions are drawn concerning the near tip flow behaviour, the good level of agreement between the numerical results and experimental data and the effectiveness of using a computational analysis to provide accurate detail useful for engineering design purposes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Integrated Land-Use and Transportation Models
Type: Book
ISBN: 978-0-080-44669-1

Book part
Publication date: 21 December 2010

Chandra R. Bhat, Cristiano Varin and Nazneen Ferdous

This chapter compares the performance of the maximum simulated likelihood (MSL) approach with the composite marginal likelihood (CML) approach in multivariate ordered-response…

Abstract

This chapter compares the performance of the maximum simulated likelihood (MSL) approach with the composite marginal likelihood (CML) approach in multivariate ordered-response situations. The ability of the two approaches to recover model parameters in simulated data sets is examined, as is the efficiency of estimated parameters and computational cost. Overall, the simulation results demonstrate the ability of the CML approach to recover the parameters very well in a 5–6 dimensional ordered-response choice model context. In addition, the CML recovers parameters as well as the MSL estimation approach in the simulation contexts used in this study, while also doing so at a substantially reduced computational cost. Further, any reduction in the efficiency of the CML approach relative to the MSL approach is in the range of nonexistent to small. When taken together with its conceptual and implementation simplicity, the CML approach appears to be a promising approach for the estimation of not only the multivariate ordered-response model considered here, but also for other analytically intractable econometric models.

Details

Maximum Simulated Likelihood Methods and Applications
Type: Book
ISBN: 978-0-85724-150-4

Article
Publication date: 16 September 2021

Sílvio Aparecido Verdério Júnior, Vicente Luiz Scalon and Santiago del Rio Oliveira

The purpose of this study is to analyze the influence of the main physical–numerical parameters in the computational evaluation of natural convection heat transfer rates in…

Abstract

Purpose

The purpose of this study is to analyze the influence of the main physical–numerical parameters in the computational evaluation of natural convection heat transfer rates in isothermal flat square plates in the laminar regime. Moreover by experimentally validate the results of the numerical models and define the best parameter settings for the problem situation studied.

Design/methodology/approach

The present work is an extension of the study by Verderio Junior et al. (2021), differing in the modeling, results analysis and conclusions for the laminar flow regime with Rade=1×105. The analysis of the influence and precision of the physical–numerical parameters: boundary conditions, degree of mesh refinement, refinement layers and κω SST and κε turbulence models, occurred from the results from 48 numerical models, which were simulated using the OpenFOAM® software. Comparing the experimental mean Nusselt number with the numerical values obtained in the simulations and the analysis of the relative errors were used in the evaluation of the advantages, restrictions and selection of the most adequate parameters to the studied problem situation.

Findings

The numerical results of the simulations were validated, with excellent precision, from the experimental reference by Kitamura et al. (2015). The application of the κω SST and κε turbulence models and the boundary conditions (with and without wall functions) were also physically validated. The use of the κω SST and κε turbulence models, in terms of cost-benefit and precision, proved to be inefficient in the problem situation studied. Simulations without turbulence models proved to be the best option for the physical model for the studies developed. The use of refinement layers, especially in applications with wall functions and turbulence models, proved unfeasible.

Practical implications

Use of the physical–numerical parameters studied and validated, and application of the modeling and analysis methodology developed in projects and optimizations of natural convection thermal systems in a laminar flow regime. Just like, reduce costs and the dependence on the construction of experimental apparatus to obtain experimental results and in the numerical-experimental validation process.

Social implications

Exclusive use of free and open-source computational tools as an alternative to feasible research in the computational fluid dynamics area in conditions of budget constraints and lack of higher value-added infrastructure, with applicability in the academic and industrial areas.

Originality/value

The results and discussions presented are original and new for the applied study of laminar natural convection in isothermal flat plate, with analysis and validation of the main physical and numerical influence parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 October 2018

Fumiya Togashi, Takashi Misaka, Rainald Löhner and Shigeru Obayashi

It is of paramount importance to ensure safe and fast evacuation routes in cities in case of natural disasters, environmental accidents or acts of terrorism. The same applies to…

Abstract

Purpose

It is of paramount importance to ensure safe and fast evacuation routes in cities in case of natural disasters, environmental accidents or acts of terrorism. The same applies to large-scale events such as concerts, sport events and religious pilgrimages as airports and to traffic hubs such as airports and train stations. The prediction of pedestrian is notoriously difficult because it varies depending on circumstances (age group, cultural characteristics, etc.). In this study, the Ensemble Kalman Filter (EnKF) data assimilation technique, which uses the updated observation data to improve the accuracy of the simulation, was applied to improve the accuracy of numerical simulations of pedestrian flow.

Design/methodology/approach

The EnKF, one of the data assimilation techniques, was applied to the in-house numerical simulation code for pedestrian flow. Two cases were studied in this study. One was the simplified one-directional experimental pedestrian flow. The other was the real pedestrian flow at the Kaaba in Mecca. First, numerical simulations were conducted using the empirical input parameter sets. Then, using the observation data, the EnKF estimated the appropriate input parameter sets. Finally, the numerical simulations using the estimated parameter sets were conducted.

Findings

The EnKF worked on the numerical simulations of pedestrian flow very effectively. In both cases: simplified experiment and real pedestrian flow, the EnKF estimated the proper input parameter sets which greatly improved the accuracy of the numerical simulation. The authors believe that the technique such as EnKF could also be used effectively in other fields of computational engineering where simulations and data have to be merged.

Practical implications

This technique can be used to improve both design and operational implementations of pedestrian and crowd dynamics predictions. It should be of high interest to command and control centers for large crowd events such as concerts, airports, train stations and pilgrimage centers.

Originality/value

To the authors’ knowledge, the data assimilation technique has not been applied to a numerical simulation of pedestrian flow, especially to the real pedestrian flow handling millions pedestrian such as the Mataf at the Kaaba. This study validated the capability and the usefulness of the data assimilation technique to numerical simulations for pedestrian flow.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 May 2012

C.R. Leonardi, D.R.J. Owen and Y.T. Feng

The purpose of this paper is to present a novel computational framework based on the lattice Boltzmann method (LBM) and discrete element method (DEM) capable of simulating fines…

Abstract

Purpose

The purpose of this paper is to present a novel computational framework based on the lattice Boltzmann method (LBM) and discrete element method (DEM) capable of simulating fines migration in three dimensions. Fines migration occurs in a block cave mine, and is characterised by the faster movement of fine and often low‐grade material towards the draw point in comparison to larger, blocky material.

Design/methodology/approach

This study builds on the foundations and applications outlined in a companion paper, in which the non‐Newtonian LBM‐DEM framework is defined and applied in 2D simulations. Issues relevant to the extension to 3D, such as spatial discretisation, fluid boundary conditions and the definition of synthetic bulk material parameters using a power law model, are discussed.

Findings

The results of the 3D DEM percolation replication showed that migration is predominantly limited to within the draw zone, and that the use of a low‐cohesion material model resulted in a greater amount of fines migration. The draw sensitivity investigation undertaken with the two bell partial block cave analysis did not show a significant difference in the amount of migration, despite the two draw strategies being deliberately chosen to result in isolated and interactive draw of material.

Originality/value

Along with the companion paper, this paper presents a novel application of the developed non‐Newtonian LBM‐DEM framework in the investigation of fines migration, which until now has been limited to scale models, cellular automata or pure DEM simulations. The results highlight the potential for this approach to be applied in an industrial context, and indicate a number of potential avenues for further research.

1 – 10 of over 14000