Search results

1 – 10 of 484
Article
Publication date: 20 March 2024

Ziming Zhou, Fengnian Zhao and David Hung

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine…

Abstract

Purpose

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine. However, it remains a daunting task to predict the nonlinear and transient in-cylinder flow motion because they are highly complex which change both in space and time. Recently, machine learning methods have demonstrated great promises to infer relatively simple temporal flow field development. This paper aims to feature a physics-guided machine learning approach to realize high accuracy and generalization prediction for complex swirl-induced flow field motions.

Design/methodology/approach

To achieve high-fidelity time-series prediction of unsteady engine flow fields, this work features an automated machine learning framework with the following objectives: (1) The spatiotemporal physical constraint of the flow field structure is transferred to machine learning structure. (2) The ML inputs and targets are efficiently designed that ensure high model convergence with limited sets of experiments. (3) The prediction results are optimized by ensemble learning mechanism within the automated machine learning framework.

Findings

The proposed data-driven framework is proven effective in different time periods and different extent of unsteadiness of the flow dynamics, and the predicted flow fields are highly similar to the target field under various complex flow patterns. Among the described framework designs, the utilization of spatial flow field structure is the featured improvement to the time-series flow field prediction process.

Originality/value

The proposed flow field prediction framework could be generalized to different crank angle periods, cycles and swirl ratio conditions, which could greatly promote real-time flow control and reduce experiments on in-cylinder flow field measurement and diagnostics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 March 2024

Lili Wang, Ying’ao Liu, Jingdong Duan and Yunlong Bao

This study aims to enhance the lubrication performance of thrust bearings. The influence of columnar convex–concave compound microtexture on bearing performance is investigated

Abstract

Purpose

This study aims to enhance the lubrication performance of thrust bearings. The influence of columnar convex–concave compound microtexture on bearing performance is investigated

Design/methodology/approach

Based on the compound microtexture model of thrust bearings, considering surface roughness and turbulent effect, the variation of lubrication characteristics with the change in the compound microtexture parameters is studied.

Findings

The results indicate that, compared with circular microtexture, the maximum pressure of compound microtexture of thrust bearings increases by 7.42%. Optimal bearing performance is achieved when the internal microtexture depth is 0.02 mm. Turbulent flow states and surface roughness lead to a reduction in the optimal depth. The maximum pressure and load-carrying capacity of the bearing decrease as the initial angle increases, whereas the friction coefficient increases with the increase in the initial angle. The lubrication performance is best for bearings with a circumferential parallel arrangement of microtexture.

Originality/value

The novel composite microtexture with columnar convex-concave is proposed, and the computational model of thrust bearings is set. The influence of surface roughness and turbulent flow on the bearing performance should be considered for better conforming with engineering practice. The effect of microtexture depth, arrangement method and distribution position on the lubrication performance of the compound microtexture thrust bearing is investigated, which is of great significance for improving tribology, thrust bearings and surface microtexture theory.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 October 2022

Yunis Ali Ahmed, Hafiz Muhammad Faisal Shehzad, Muhammad Mahboob Khurshid, Omayma Husain Abbas Hassan, Samah Abdelsalam Abdalla and Nashat Alrefai

Building information modelling (BIM) has transformed the traditional practices of the Architecture, Engineering and Construction (AEC) industry. BIM creates a collaborative…

Abstract

Purpose

Building information modelling (BIM) has transformed the traditional practices of the Architecture, Engineering and Construction (AEC) industry. BIM creates a collaborative digital representation of built environment data. Competitive advantage can be achieved with collaborative project delivery and rich information modelling. Despite the abundant benefits, BIM’s adoption in the AEC is susceptible to confrontation. A substantial impediment to BIM adoption often cited is data interoperability. Other facets of interoperability got limited attention. Other academic areas, including information systems, discuss the interoperability construct ahead of data interoperability. These interoperability factors have yet to be surveyed in the AEC industry. This study aims to investigate the effect of interoperability factors on BIM adoption and develop a comprehensive BIM adoption model.

Design/methodology/approach

The theoretical foundations of the proposed model are based on the European interoperability framework (EIF) and technology, organization, environment framework (TOE). Quantitative data collection from construction firms is gathered. The model has been thoroughly examined and validated using partial least squares structural equation modelling in SmartPLS software.

Findings

The study’s findings indicate that relative advantage, top management support, government support, organizational readiness and regulation support are determinants of BIM adoption. Financial constraints, complexity, lack of technical interoperability, semantic interoperability, organizational interoperability and uncertainty are barriers to BIM adoption. However, compatibility, competitive pressure and legal interoperability do not affect BIM adoption.

Practical implications

Finally, this study provides recommendations containing the essential technological, organizational, environmental and interoperability factors that AEC stakeholders can address to enhance BIM adoption.

Originality/value

To the best of the authors’ knowledge, this paper is one of the first studies to combine TOE and EIF in a single research model. This research provides empirical evidence for using the proposed model as a guide to promoting BIM adoption. As a result, the highlighted determinants can assist organizations in developing and executing successful policies that support BIM adoption in the AEC industry.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 20 March 2024

Hakan F. Oztop, Burak Kiyak and Ishak Gökhan Aksoy

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store…

Abstract

Purpose

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store energy. This approach is intended to offer novel insights into enhancing thermal energy storage systems, particularly for applications where heat transfer efficiency and energy storage are critical.

Design/methodology/approach

The research involved an experimental and numerical analysis of PCM with a melting temperature range of 22 °C–26°C under various conditions. Three different jet angles (45°, 90° and 135°) and two container angles (45° and 90°) were tested. Additionally, two different Reynolds numbers (2,235 and 4,470) were used to explore the effects of jet outlet velocities on PCM melting behaviour. The study used a circular container and analysed the melting process using the hot air inclined jet impingement (HAIJI) method.

Findings

The obtained results showed that the average temperature for the last time step at Ф = 90° and Re = 4,470 is 6.26% higher for Ф = 135° and 14.23% higher for Ф = 90° compared with the 45° jet angle. It is also observed that the jet angle, especially for Ф = 90°, is a much more important factor in energy storage than the Reynolds number. In other words, the jet angle can be used as a passive control parameter for energy storage.

Originality/value

This study offers a novel perspective on the effective storage of waste heat transferred with air, such as exhaust gases. It provides valuable insights into the role of jet inclination angles and Reynolds numbers in optimizing the melting and energy storage performance of PCMs, which can be crucial for enhancing the efficiency of thermal energy storage systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 August 2022

Jordan Ferreira

The intention of this work is to generate a tool to facilitate the visualization of urban parameters, critically discussing the current form of urban planning in Brazil and thus…

Abstract

Purpose

The intention of this work is to generate a tool to facilitate the visualization of urban parameters, critically discussing the current form of urban planning in Brazil and thus facilitate popular participation in decisions, considering that since 2001, it is foreseen by law that the elaboration processes of municipal urban plans in Brazil must have popular participation in order to be legitimized.

Design/methodology/approach

The method consists of three-dimensionally modeling the constructive potential within the lots, using the parameters of the Ribeirão das Neves city master plan (State of Minas Gerais, Brazil), using computer software, to predict the impact on landscape that the parameters generate and comparing different software programs.

Findings

With the proposed tool, it became clear that many of the city's parameters alone cannot reach the guidelines of the master plan, and the comparison of two software programs generated options for different local realities. It is a methodology that is able to provide excellent support for urban planning laws in Brazil to be more effective and less delayed.

Originality/value

The software was configured with a script developed by the Geoprocessing Laboratory of a university in Brazil and was used for the first time to completely analyze a municipal master plan for the metropolitan region of Belo Horizonte, generating a tool able to be used in master plans' review.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 29 March 2024

Jitesh J. Thakkar, Rishabh Rathore and Chandrima Chatterjee

Despite the fact that hygiene and sanitation are becoming more critical for improving the present situation in developing nations, the factors that affect them are not well…

Abstract

Purpose

Despite the fact that hygiene and sanitation are becoming more critical for improving the present situation in developing nations, the factors that affect them are not well covered in the present research. This paper investigates the quality of the hygiene and sanitization factors and identifies the interrelations between the identified factors.

Design/methodology/approach

A graph theory-based approach is proposed to assess the factors influencing the practice, and a critical service index (CSI) is used to quantify the same.

Findings

Two Indian villages are used to illustrate the implementation of the suggested approach. This represents the validation of the suggested method, as well as assisting in the development of essential suggestions for increasing the quality of hygiene and sanitization in the Indian context. In spite of the increasing importance of hygiene and sanitation for improving the current situation in developing countries, the factors that influence them are not well-researched.

Research limitations/implications

This study contributes in two ways. First, it provides an organized methodology for quantifying hygiene and sanitation factors and a critical service index that incorporates the findings. The suggested approach may also be used to evaluate and classify other sectors. Second, it shows how the methodology was used to create key recommendations for two Indian villages, which may be considered the first effort in India’s hygiene and sanitation initiatives.

Originality/value

This research discussed improvements in sanitation and hygiene habits among Indian households, which have not been achieved as expected under the Swachh Bharat Mission.

Details

International Journal of Social Economics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0306-8293

Keywords

Article
Publication date: 2 June 2023

Lina Gozali, Teuku Yuri M. Zagloel, Togar Mangihut Simatupang, Wahyudi Sutopo, Aldy Gunawan, Yun-Chia Liang, Bernardo Nugroho Yahya, Jose Arturo Garza-Reyes, Agustinus Purna Irawan and Yuliani Suseno

This research studies the development of the evolving dynamic system model and explores the important elements or factors and what detailed attributes are the main influences…

Abstract

Purpose

This research studies the development of the evolving dynamic system model and explores the important elements or factors and what detailed attributes are the main influences model in achieving the success of a business, industry and management. It also identifies the real and major differences between static and dynamic business management models and the detailed factors that influence them. Later, this research investigates the benefits/advantages and limitations/disadvantages of some research studies. The studies conducted in this research put more emphasis on the capabilities of system dynamics (SD) in modeling and the ability to measure, analyse and capture problems in business, industry, manufacturing etc.

Design/methodology/approach

The research presented in this work is a qualitative research based on a literature review. Publicly available research publications and reports have been used to create a research foundation, identify the research gaps and develop new analyses from the comparative studies. As the literature review progressed, the scope of the literature search was further narrowed down to the development of SD models. Often, references to certain selected literature have been examined to find other relevant literature. To do so, a supporting tool (that connects related articles) provided by Google Scholar, Scopus, and particular journals has been used.

Findings

The dynamic business and management model is very different from the static business model in complexity, formality, flexibility, capturing, relationships, advantages, innovation model, new goals, updated information, perspective and problem-solving abilities. The initial approach of a static system was applied in the canvas business model, but further developments can be continued with a dynamic system approach.

Research limitations/implications

Based on this study, which shows that businesses are developing more towards digitalisation, wanting the ability to keep up with the era that is moving so fast and the desire to increase profits, an instrument is needed that can help describe the difficulties of the needs and developments of the future world. This instrument, or tool of SD, is also expected to assist in drawing future models and in building a business with complex variables that can be predicted from the beginning.

Practical implications

This study will contribute to the SD study for many business incubator research studies. Many practical in business incubator management to have a benefit how to achieve the business performance management (BPM) in SD review.

Originality/value

The significant differences between static and dynamics to be used for business research and strategic performance management. This comparative study analyses some SD models from many authors worldwide. Their goals behind their strategic business models and encounter for their respective progress.

Article
Publication date: 22 March 2024

Sanaz Khalaj Rahimi and Donya Rahmani

The study aims to optimize truck routes by minimizing social and economic costs. It introduces a strategy involving diverse drones and their potential for reusing at DNs based on…

20

Abstract

Purpose

The study aims to optimize truck routes by minimizing social and economic costs. It introduces a strategy involving diverse drones and their potential for reusing at DNs based on flight range. In HTDRP-DC, trucks can select and transport various drones to LDs to reduce deprivation time. This study estimates the nonlinear deprivation cost function using a linear two-piece-wise function, leading to MILP formulations. A heuristic-based Benders Decomposition approach is implemented to address medium and large instances. Valid inequalities and a heuristic method enhance convergence boundaries, ensuring an efficient solution methodology.

Design/methodology/approach

Research has yet to address critical factors in disaster logistics: minimizing the social and economic costs simultaneously and using drones in relief distribution; deprivation as a social cost measures the human suffering from a shortage of relief supplies. The proposed hybrid truck-drone routing problem minimizing deprivation cost (HTDRP-DC) involves distributing relief supplies to dispersed demand nodes with undamaged (LDs) or damaged (DNs) access roads, utilizing multiple trucks and diverse drones. A Benders Decomposition approach is enhanced by accelerating techniques.

Findings

Incorporating deprivation and economic costs results in selecting optimal routes, effectively reducing the time required to assist affected areas. Additionally, employing various drone types and their reuse in damaged nodes reduces deprivation time and associated deprivation costs. The study employs valid inequalities and the heuristic method to solve the master problem, substantially reducing computational time and iterations compared to GAMS and classical Benders Decomposition Algorithm. The proposed heuristic-based Benders Decomposition approach is applied to a disaster in Tehran, demonstrating efficient solutions for the HTDRP-DC regarding computational time and convergence rate.

Originality/value

Current research introduces an HTDRP-DC problem that addresses minimizing deprivation costs considering the vehicle’s arrival time as the deprivation time, offering a unique solution to optimize route selection in relief distribution. Furthermore, integrating heuristic methods and valid inequalities into the Benders Decomposition approach enhances its effectiveness in solving complex routing challenges in disaster scenarios.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 4 April 2024

Dong Li, Yu Zhou, Zhan-Wei Cao, Xin Chen and Jia-Peng Dai

This paper aims to establish a lattice Boltzmann (LB) method for solid-liquid phase transition (SLPT) from the pore scale to the representative elementary volume (REV) scale. By…

Abstract

Purpose

This paper aims to establish a lattice Boltzmann (LB) method for solid-liquid phase transition (SLPT) from the pore scale to the representative elementary volume (REV) scale. By applying this method, detailed information about heat transfer and phase change processes within the pores can be obtained, while also enabling the calculation of larger-scale SLPT problems, such as shell-and-tube phase change heat storage systems.

Design/methodology/approach

Three-dimensional (3D) pore-scale enthalpy-based LB model is developed. The computational input parameters at the REV scale are derived from calculations at the pore scale, ensuring consistency between the two scales. The approaches to reconstruct the 3D porous structure and determine the REV of metal foam were discussed. The implementation of conjugate heat transfer between the solid matrix and the solid−liquid phase change material (SLPCM) for the proposed model is developed. A simple REV-scale LB model under the local thermal nonequilibrium condition is presented. The method of bridging the gap between the pore-scale and REV-scale enthalpy-based LB models by the REV is given.

Findings

This coupled method facilitates detailed simulations of flow, heat transfer and phase change within pores. The approach holds promise for multiscale calculations in latent heat storage devices with porous structures. The SLPT of the heat sinks for electronic device thermal control was simulated as a case, demonstrating the efficiency of the present models in designing and optimizing SLPT devices.

Originality/value

A coupled pore-scale and REV-scale LB method as a numerical tool for investigating phase change in porous materials was developed. This innovative approach allows for the capture of details within pores while addressing computations over a large domain. The LB method for simulating SLPT from the pore scale to the REV scale was given. The proposed method addresses the conjugate heat transfer between the SLPCM and the solid matrix in the enthalpy-based LB model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 June 2021

Naga Swetha R, Vimal K. Shrivastava and K. Parvathi

The mortality rate due to skin cancers has been increasing over the past decades. Early detection and treatment of skin cancers can save lives. However, due to visual resemblance…

Abstract

Purpose

The mortality rate due to skin cancers has been increasing over the past decades. Early detection and treatment of skin cancers can save lives. However, due to visual resemblance of normal skin and lesion and blurred lesion borders, skin cancer diagnosis has become a challenging task even for skilled dermatologists. Hence, the purpose of this study is to present an image-based automatic approach for multiclass skin lesion classification and compare the performance of various models.

Design/methodology/approach

In this paper, the authors have presented a multiclass skin lesion classification approach based on transfer learning of deep convolutional neural network. The following pre-trained models have been used: VGG16, VGG19, ResNet50, ResNet101, ResNet152, Xception, MobileNet and compared their performances on skin cancer classification.

Findings

The experiments have been performed on HAM10000 dataset, which contains 10,015 dermoscopic images of seven skin lesion classes. The categorical accuracy of 83.69%, Top2 accuracy of 91.48% and Top3 accuracy of 96.19% has been obtained.

Originality/value

Early detection and treatment of skin cancer can save millions of lives. This work demonstrates that the transfer learning can be an effective way to classify skin cancer images, providing adequate performance with less computational complexity.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 484