Search results

1 – 10 of 148
Article
Publication date: 4 July 2023

Jianhang Xu, Peng Li and Yiren Yang

The paper aims to develop an efficient data-driven modeling approach for the hydroelastic analysis of a semi-circular pipe conveying fluid with elastic end supports. Besides the…

Abstract

Purpose

The paper aims to develop an efficient data-driven modeling approach for the hydroelastic analysis of a semi-circular pipe conveying fluid with elastic end supports. Besides the structural displacement-dependent unsteady fluid force, the steady one related to structural initial configuration and the variable structural parameters (i.e. the variable support stiffness) are considered in the modeling.

Design/methodology/approach

The steady fluid force is treated as a pipe preload, and the elastically supported pipe-fluid model is dealt with as a prestressed hydroelastic system with variable parameters. To avoid repeated numerical simulations caused by parameter variation, structural and hydrodynamic reduced-order models (ROMs) instead of conventional computational structural dynamics (CSD) and computational fluid dynamics (CFD) solvers are utilized to produce data for the update of the structural, hydrodynamic and hydroelastic state-space equations. Radial basis function neural network (RBFNN), autoregressive with exogenous input (ARX) model as well as proper orthogonal decomposition (POD) algorithm are applied to modeling these two ROMs, and a hybrid framework is proposed to incorporate them.

Findings

The proposed approach is validated by comparing its predictions with theoretical solutions. When the steady fluid force is absent, the predictions agree well with the “inextensible theory”. The pipe always loses its stability via out-of-plane divergence first, regardless of the support stiffness. However, when steady fluid force is considered, the pipe remains stable throughout as flow speed increases, consistent with the “extensible theory”. These results not only verify the accuracy of the present modeling method but also indicate that the steady fluid force, rather than the extensibility of the pipe, is the leading factor for the differences between the in- and extensible theories.

Originality/value

The steady fluid force and the variable structural parameters are considered in the data-driven modeling of a hydroelastic system. Since there are no special restrictions on structural configuration, steady flow pattern and variable structural parameters, the proposed approach has strong portability and great potential application for other hydroelastic problems.

Article
Publication date: 13 April 2023

Yajing Hu, Botong Li, Xinhui Si, Jing Zhu and Linyu Meng

Atherosclerosis tends to occur in the distinctive carotid sinus, leading to vascular stenosis and then causing death. The purpose of this paper is to investigate the effect of…

Abstract

Purpose

Atherosclerosis tends to occur in the distinctive carotid sinus, leading to vascular stenosis and then causing death. The purpose of this paper is to investigate the effect of sinus sizes, positions and hematocrit on blood flow dynamics and heat transfer by different numerical approaches.

Design/methodology/approach

The fluid flow and heat transfer in the carotid artery with three different sinus sizes, three different sinus locations and four different hematocrits are studied by both computational fluid dynamics (CFD) and fluid-structure interaction (FSI) methods. An ideal geometric model and temperature-dependent non-Newtonian viscosity are adopted, while the wall heat flux concerning convection, radiation and evaporation is used.

Findings

With increasing sinus size, the average velocity and temperature of the blood fluid decrease, and the area of time average wall shear stress (TAWSS)with small values decreases. As the distances between sinuses and bifurcation points increase, the average temperature and the maximum TAWSS decrease. Atherosclerosis is more likely to develop when the sinuses are enlarged, when the sinuses are far from bifurcation points, or when the hematocrit is relatively large or small. The probability of thrombosis forming and developing becomes larger when the sinus becomes larger and the hematocrit is small enough. The movement of the arterial wall obviously reduces the velocity of blood flow, blood temperature and WSS. This study also suggests that the elastic role of arterial walls cannot be ignored.

Originality/value

The hemodynamics of the internal carotid artery sinus in a carotid artery with a bifurcation structure have been investigated thoroughly, on which the impacts of many factors have been considered, including the non-Newtonian behavior of blood and empirical boundary conditions. The results when the FSI is considered and absent are compared.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 August 2023

Lucilla Coelho de Almeida, Joao Americo Aguirre Oliveira Junior and Jian Su

This paper aims to present a novel approach for computing particle temperatures in simulations coupling computational fluid dynamics (CFD) and discrete element method (DEM) to…

Abstract

Purpose

This paper aims to present a novel approach for computing particle temperatures in simulations coupling computational fluid dynamics (CFD) and discrete element method (DEM) to predict flow and heat transfer in fluidized beds of thermally thick spherical particles.

Design/methodology/approach

An improved lumped formulation based on Hermite-type approximations for integrals to relate surface temperature to average temperature and surface heat flux is used to overcome the limitations of classical lumped models. The model is validated through comparisons with analytical solutions for a convectively cooled sphere and experimental data for a fixed particle bed. The coupled CFD-DEM model is then applied to simulate a Geldart D bubbling fluidized bed, comparing the results to those obtained using the classical lumped model.

Findings

The validation cases demonstrate that ignoring internal thermal resistance can significantly impact the temperature in cases where the Biot number is greater than 0.1. The results for the fixed bed case clearly demonstrate that the proposed method yields significantly improved outcomes compared to the classical model. The fluidized bed results show that surface temperature can deviate considerably from the average temperature, underscoring the importance of accurately accounting for surface temperature in convective heat transfer predictions and surface processes.

Originality/value

The proposed approach offers a physically more consistent simulation without imposing a significant increase in computational cost. The improved lumped formulation can be easily and inexpensively integrated into a typical DEM solver workflow to predict heat transfer for spherical particles, with important implications for various industrial applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 January 2022

Serhat Yilmaz and Gülten Altıokka Yılmaz

The development of robust control algorithms for the position, velocity and trajectory control of unmanned underwater vehicles (UUVs) depends on the accuracy of their mathematical…

Abstract

Purpose

The development of robust control algorithms for the position, velocity and trajectory control of unmanned underwater vehicles (UUVs) depends on the accuracy of their mathematical models. Accuracy of the model is determined by precise estimation of the UUV hydrodynamic parameters. The purpose of this study is to determine the hydrodynamic forces and moments acting on an underwater vehicle with complex body geometry and moving at low speeds and to achieve the accurate coefficients associated with them.

Design/methodology/approach

A three-dimensional (3D) computer-aided design (CAD) model of UUV is designed with one-to-one dimensions. 3D fluid flow simulations are conducted using computational fluid dynamics (CFD) software programme in the solution of Navier Stokes equations for laminar and turbulent flow analysis. The coefficients depending on the hydrodynamic forces and moments are determined by the external flow analysis using the CFD programme. The Flow Simulation k-ε turbulence model is used for the transition from laminar flow to turbulent flow. Hydrodynamic properties such as lift and drag coefficients and roll and yaw moment coefficients are calculated. The parameters are compared with the coefficient values found by experimental methods.

Findings

Although the modular type UUV has a complex body geometry, the comparative results of the experiments and simulations confirm that the defined model parameters are accurate and close to the actual experimental values. In the proposed k-ε method, the percentage error in the estimation of drag and lifting coefficients is decreased to 4.2% and 8.39%, respectively.

Practical implications

The model coefficients determined in this study can be used in high-level control simulations which leads to the development of robust real-time controllers for complex-shaped modular UUVs.

Originality/value

The Lucky Fin UUV with 4 degrees of freedom is a specific design and its CAD model is first extracted. Verification of simulation results by experiments is generally less referenced in studies. However, it provides more precise parameter identification of the model. Proposed study offers a simple and low-cost experimental measurement method for verification of the hydrodynamic parameters. The extracted model and coefficients are worthwhile references for the analysis of modular type UUVs.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 February 2023

Andro Rak, Luka Grbčić, Ante Sikirica and Lado Kranjčević

The purpose of this paper is the examination of fluid flow around NACA0012 airfoil, with the aim of the numerical validation between the experimental results in the wind tunnel…

Abstract

Purpose

The purpose of this paper is the examination of fluid flow around NACA0012 airfoil, with the aim of the numerical validation between the experimental results in the wind tunnel and the Lattice Boltzmann method (LBM) analysis, for the medium Reynolds number (Re = 191,000). The LBM–large Eddy simulation (LES) method described in this paper opens up opportunities for faster computational fluid dynamics (CFD) analysis, because of the LBM scalability on high performance computing architectures, more specifically general purpose graphics processing units (GPGPUs), pertaining at the same time the high resolution LES approach.

Design/methodology/approach

Process starts with data collection in open-circuit wind tunnel experiment. Furthermore, the pressure coefficient, as a comparative variable, has been used with varying angle of attack (2°, 4°, 6° and 8°) for both experiment and LBM analysis. To numerically reproduce the experimental results, the LBM coupled with the LES turbulence model, the generalized wall function (GWF) and the cumulant collision operator with D3Q27 velocity set has been used. Also, a mesh independence study has been provided to ensure result congruence.

Findings

The proposed LBM methodology is capable of highly accurate predictions when compared with experimental data. Besides, the special significance of this work is the possibility of experimental and CFD comparison for the same domain dimensions.

Originality/value

Considering the quality of results, root-mean-square error (RMSE) shows good correlations both for airfoil’s upper and lower surface. More precisely, maximal RMSE for the upper surface is 0.105, whereas 0.089 for the lower surface, regarding all angles of attack.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 March 2023

Jiahao Zhu, Guohua Xu and Yongjie Shi

This paper aims to develop a new method of fuselage drag optimization that can obtain results faster than the conventional methods based on full computational fluid dynamics (CFD…

Abstract

Purpose

This paper aims to develop a new method of fuselage drag optimization that can obtain results faster than the conventional methods based on full computational fluid dynamics (CFD) calculations and can be used to improve the efficiency of preliminary design.

Design/methodology/approach

An efficient method for helicopter fuselage shape optimization based on surrogate-based optimization is presented. Two numerical simulation methods are applied in different stages of optimization according to their relative advantages. The fast panel method is used to calculate the sample data to save calculation time for a large number of sample points. The initial solution is obtained by combining the Kriging surrogate model and the multi-island genetic algorithm. Then, the accuracy of the solution is determined by using the infill criteria based on CFD corrections. A parametric model of the fuselage is established by several characteristic sections and guiding curves.

Findings

It is demonstrated that this method can greatly reduce the calculation time while ensuring a high accuracy in the XH-59A helicopter example. The drag coefficient of the optimized fuselage is reduced by 13.3%. Because of the use of different calculation methods for samples, this novel method reduces the total calculation time by almost fourfold compared with full CFD calculations.

Originality/value

To the best of the authors’ knowledge, this is the first study to provide a novel method of fuselage drag optimization by combining different numerical simulation methods. Some suggestions on fuselage shape optimization are given for the XH-59A example.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 October 2022

Carlos A. Gonzalez Lugo, Dylan Scott Caputo, Michael J. Hutchinson, Kamran Fouladi and Babak Eslami

The purpose of this study is to design and develop an environmentally controlled enclosure for commercial three-dimensional (3D) printers.

Abstract

Purpose

The purpose of this study is to design and develop an environmentally controlled enclosure for commercial three-dimensional (3D) printers.

Design/methodology/approach

Computational fluid dynamics (CFD) simulations and experimental testing investigated various designs for environmentally controlled enclosures. CFD simulations provided the necessary information to select the optimal and feasible design, whereas experimental testing validated the CFD simulation results. An environmentally controlled environment allowed test samples to be printed at several relative humidity (RH) settings (20% RH, 50% RH and 80% RH). The test samples were characterized at both the macro and micro scales. The macroscale characterization was conducted using the static tensile testing procedure, while the microscale polymer material properties were determined using atomic force microscopy.

Findings

An environmentally controlled enclosure was designed and built to produce airflow in the print region with an average RH uniformity of over 0.70. Three batches of ASTM D638 standard test samples were printed at 20% RH (low RH), 50% RH (mid RH) and 80% RH (high RH). Macroscale characterization showed that the samples printed at lower humidity had statistically significantly higher tangent modulus, ultimate tensile strength and rupture strength. atomic force microscopy studies have also verified these results at the microscale and nanoscale. These studies also showed that a high humidity environment interacts with melted polylactic acid, causing additional surface roughness that reduces the strength of 3D-printed parts.

Originality/value

There is a need for stronger and higher-quality 3D-printed parts in the additive manufacturing (AM) market. This study fulfills that need by designing and developing an environmentally controlled add-on enclosure for the AM market.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 June 2023

Simon Bagy, Michel Libsig, Bastien Martinez and Baptiste Masse

This paper aims to describe the use of optimization approaches to increase the range of near-future howitzer ammunition.

Abstract

Purpose

This paper aims to describe the use of optimization approaches to increase the range of near-future howitzer ammunition.

Design/methodology/approach

The performance of a gliding projectile concept is assessed using an aeroballistic workflow, comprising aerodynamic characterization and flight trajectory computation. First, a single-objective optimization is run with genetic algorithms to find the maximal attainable range for this type of projectile. Then, a multi-objective formulation of the problem is proposed to consider the compromise between range and time of flight. Finally, the aerodynamic model used for the gliding ammunition is evaluated, in comparison with direct computational fluid dynamics (CFD) computations.

Findings

Applying single-objective range maximization results in a great improvement of the reachable distance of the projectile, at the expense of the flight duration. Therefore, a multi-objective optimization is implemented in a second time, to search sets of parameters resulting in an optimal compromise between fire range and flight time. The resulting Pareto front can be directly interpreted and has the advantage of being useful for tactical decisions.

Research limitations/implications

The main limitation of the work concerns the aerodynamic model of the gliding ammunition, which was initially proposed as an alternative to reduce significantly the computational cost of aerodynamic characterization and enable optimizations. When compared with direct CFD computations, this method appears to induce an overestimation of the range. This suggests future evolution to improve the accuracy of this approach.

Originality/value

To the best of the authors’ knowledge, this paper presents an original ammunition concept for howitzers, aiming at extending the range of fire by using lifting surfaces and guidance. In addition, optimization techniques are used to improve the range of such projectile configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 8 November 2023

Armando Di Meglio, Nicola Massarotti, Samuel Rolland and Perumal Nithiarasu

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical…

Abstract

Purpose

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical correlations between pressure gradient and velocity.

Design/methodology/approach

The numerical correlations origin from computational fluid dynamics simulations, conducted at the microscopic scale, in which three fluid channels representing the porous media are taken into account. More specifically, for a specific frequency and stack porosity, the oscillating pressure input is varied, and the velocity and the pressure-drop are post-processed in the frequency domain (Fast Fourier Transform analysis).

Findings

It emerges that the viscous component of pressure drop follows a quadratic trend with respect to velocity inside the stack, while the inertial component is linear also at high-velocity regimes. Furthermore, the non-linear coefficient b of the correlation ax + bx2 (related to the Forchheimer coefficient) is discovered to be dependent on frequency. The largest value of the b is found at low frequencies as the fluid particle displacement is comparable to the stack length. Furthermore, the lower the porosity the higher the Forchheimer term because the velocity gradients at the stack geometrical discontinuities are more pronounced.

Originality/value

The main novelty of this work is that, for the first time, non-linear losses of a parallel plate stack are investigated from a macroscopic point of view and summarised into a non-linear correlation, similar to the steady-state and well-known Darcy–Forchheimer law. The main difference is that it considers the frequency dependence of both Darcy and Forchheimer terms. The results can be used to enhance the analysis and design of thermoacoustic devices, which use the kind of stacks studied in the present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 May 2022

Fatwa Azam Maulana, Ema Amalia and Mochammad Agoes Moelyadi

High Altitude Long Endurance Unmanned Aerial Vehicle (HALE UAV) driven by a hybrid power between battery and solar panel have attracted many researchers. The HALE UAV which…

Abstract

Purpose

High Altitude Long Endurance Unmanned Aerial Vehicle (HALE UAV) driven by a hybrid power between battery and solar panel have attracted many researchers. The HALE UAV which develops at Bandung Institute of Technology has design requirements of a 63 kg MTOW with a cruise velocity of 22.1 m/s at an altitude of 60,000 ft propelled by two propellers. The main problems that arise with the propellers gained from the market are these propellers cannot operate properly at the cruise phase due to inadequate thrust and high drag value. This paper aims to design a propeller that solves those problems.

Design/methodology/approach

The Larrabee method is used to design this propeller geometry with an output in the form of a chord and twist distribution. The CFD approach method is used to improve the design resulting from the Larrabee method.

Findings

This study shows that the inputted thrust value of the propeller designed using the Larrabee method is always higher than the thrust value resulting from the CFD simulation with a difference of around 20% so a design improvement process using CFD is required.

Originality/value

The analysis of propeller implementation in various mission profiles shows that this propeller can operate fully from climbing at sea level to cruising flight at an altitude of 60,000 ft. The same procedure can be applied in other HALE UAV cases to generate a propeller design with different objectives.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 148