Search results

1 – 10 of 934
Article
Publication date: 8 February 2023

Mousumi Karmakar, Vivek Kumar Singh and Sumit Kumar Banshal

This paper aims to explore the impact of the data observation period on the computation of altmetric measures like velocity index (VI) and half-life. Furthermore, it also attempts…

Abstract

Purpose

This paper aims to explore the impact of the data observation period on the computation of altmetric measures like velocity index (VI) and half-life. Furthermore, it also attempts to determine whether article-level computations are better than computations on the whole of the data for computing such measures.

Design/methodology/approach

The complete publication records for the year 2016 indexed in Web of Science and their altmetric data (original tweets) obtained from PlumX are obtained and analysed. The creation date of articles is taken from Crossref. Two time-dependent variables, namely, half-life and VI are computed. The altmetric measures are computed for all articles at different observation points, and by using whole group as well as article-level averaging.

Findings

The results show that use of longer observation period significantly changes the values of different altmetric measures computed. Furthermore, use of article-level delineation is advocated for computing different measures for a more accurate representation of the true values for the article distribution.

Research limitations/implications

The analytical results show that using different observation periods change the measured values of the time-related altmetric measures. It is suggested that longer observation period should be used for appropriate measurement of altmetric measures. Furthermore, the use of article-level delineation for computing the measures is advocated as a more accurate method to capture the true values of such measures.

Practical implications

The research work suggests that altmetric mentions accrue for a longer period than the commonly believed short life span and therefore the altmetric measurements should not be limited to observation of early accrued data only.

Social implications

The present study indicates that use of altmetric measures for research evaluation or other purposes should be based on data for a longer observation period and article-level delineation may be preferred. It contradicts the common belief that tweet accumulation about scholarly articles decay quickly.

Originality/value

Several studies have shown that altmetric data correlate well with citations and hence early altmetric counts can be used to predict future citations. Inspired by these findings, majority of such monitoring and measuring exercises have focused mainly on capturing immediate altmetric event data for articles just after the publication of the paper. This paper demonstrates the impact of the observation period and article-level aggregation on such computations and suggests to use a longer observation period and article-level delineation. To the best of the authors’ knowledge, this is the first such study of its kind and presents novel findings.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Article
Publication date: 22 June 2023

Simon Bagy, Michel Libsig, Bastien Martinez and Baptiste Masse

This paper aims to describe the use of optimization approaches to increase the range of near-future howitzer ammunition.

Abstract

Purpose

This paper aims to describe the use of optimization approaches to increase the range of near-future howitzer ammunition.

Design/methodology/approach

The performance of a gliding projectile concept is assessed using an aeroballistic workflow, comprising aerodynamic characterization and flight trajectory computation. First, a single-objective optimization is run with genetic algorithms to find the maximal attainable range for this type of projectile. Then, a multi-objective formulation of the problem is proposed to consider the compromise between range and time of flight. Finally, the aerodynamic model used for the gliding ammunition is evaluated, in comparison with direct computational fluid dynamics (CFD) computations.

Findings

Applying single-objective range maximization results in a great improvement of the reachable distance of the projectile, at the expense of the flight duration. Therefore, a multi-objective optimization is implemented in a second time, to search sets of parameters resulting in an optimal compromise between fire range and flight time. The resulting Pareto front can be directly interpreted and has the advantage of being useful for tactical decisions.

Research limitations/implications

The main limitation of the work concerns the aerodynamic model of the gliding ammunition, which was initially proposed as an alternative to reduce significantly the computational cost of aerodynamic characterization and enable optimizations. When compared with direct CFD computations, this method appears to induce an overestimation of the range. This suggests future evolution to improve the accuracy of this approach.

Originality/value

To the best of the authors’ knowledge, this paper presents an original ammunition concept for howitzers, aiming at extending the range of fire by using lifting surfaces and guidance. In addition, optimization techniques are used to improve the range of such projectile configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 October 2023

Hatzav Yoffe, Noam Raanan, Shaked Fried, Pnina Plaut and Yasha Jacob Grobman

This study uses computer-aided design to improve the ecological and environmental sustainability of early-stage landscape designs. Urban expansion on open land and natural…

Abstract

Purpose

This study uses computer-aided design to improve the ecological and environmental sustainability of early-stage landscape designs. Urban expansion on open land and natural habitats has led to a decline in biodiversity and increased climate change impacts, affecting urban inhabitants' quality of life and well-being. While sustainability indicators have been employed to assess the performance of buildings and neighbourhoods, landscape designs' ecological and environmental sustainability has received comparatively less attention, particularly in early-design stages where applying sustainability approaches is impactful.

Design/methodology/approach

The authors propose a computation framework for evaluating key landscape sustainability indicators and providing real-time feedback to designers. The method integrates spatial indicators with widely recognized sustainability rating system credits. A specialized tool was developed for measuring biomass optimization, precipitation management and urban heat mitigation, and a proof-of-concept experiment tested the tool's effectiveness on three Mediterranean neighbourhood-level designs.

Findings

The results show a clear connection between the applied design strategy to the indicator behaviour. This connection enhances the ability to establish sustainability benchmarks for different types of landscape developments using parametric design.

Practical implications

The study allows non-expert designers to measure and embed landscape sustainability early in the design stages, thus lowering the entry level for incorporating biodiversity enhancement and climate mitigation approaches.

Originality/value

This study expands the parametric vocabulary for measuring landscape sustainability by introducing spatial ecosystem services and architectural sustainability indicators on a unified platform, enabling the integration of critical climate and biodiversity-loss solutions earlier in the development process.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

Article
Publication date: 27 June 2023

Mostafa Alani and Akel Kahera

This study explores the potential of computational design processes in creating contextually responsive envelopes for high-rise residential buildings in the Middle East. This…

Abstract

Purpose

This study explores the potential of computational design processes in creating contextually responsive envelopes for high-rise residential buildings in the Middle East. This includes considering both physical constraints and social preferences, with a focus on balancing sunlight exposure, privacy and views.

Design/methodology/approach

A two-phase simulation study analyzed various exterior envelope systems in Baghdad high-rise buildings. The first phase examined two commonly used exterior envelopes – fully glazed and window-based – to assess sunlight exposure, privacy and views. In the second phase, a multi-objective optimization process was applied to derive contextually optimized design solutions addressing the challenges identified in the first phase.

Findings

The study reveals that contextually optimized design solutions significantly improved direct sunlight exposure and privacy while maintaining satisfactory views. Although fully glazed exterior envelopes provided better-uninterrupted views, the optimized solutions offered more balanced performance across all factors, demonstrating the potential of computational design processes in creating contextually responsive building envelopes.

Originality/value

This paper emphasizes the importance of considering both physical and social contexts in the development of algorithms for architecture in the Middle East. This paper supports a progressive interpretation of traditional building references and demonstrates how computational design processes can create contextually responsive building envelopes that satisfy social needs and provide better-performing buildings for inhabitants.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 21 September 2022

Gopinath Anjinappa and Divakar Bangalore Prabhakar

The fluctuations that occurred between the power requirements have shown a higher range of voltage regulations and frequency. The fluctuations are caused because of substantial…

Abstract

Purpose

The fluctuations that occurred between the power requirements have shown a higher range of voltage regulations and frequency. The fluctuations are caused because of substantial changes in the energy dissipation. The operational efficiency has been reduced when the power grid is enabled with the help of electric vehicles (EVs) that were created by the power resources. The model showed an active load matching for regulating the power and there occurred a harmonic motion in energy. The main purpose of the proposed research is to handle the energy sources for stabilization which has increased the reliability and improved the power efficiency. This study or paper aims to elaborate the security and privacy challenges present in the vehicle 2 grid (V2G) network and their impact with grid resilience.

Design/methodology/approach

The smart framework is proposed which works based on Internet of Things and edge computations that managed to perform an effective V2G operation. Thus, an optimum model for scheduling the charge is designed on each EV to maximize the number of users and selecting the best EV using the proposed ant colony optimization (ACO). At the first, the constructive phase of ACO where the ants in the colony generate the feasible solutions. The constructive phase with local search generates an ACO algorithm that uses the heterogeneous colony of ants and finds effectively the best-known solutions widely to overcome the problem.

Findings

The results obtained by the existing in-circuit serial programming-plug-in electric vehicles model in terms of power usage ranged from 0.94 to 0.96 kWh which was lower when compared to the proposed ACO that showed power usage of 0.995 to 0.939 kWh, respectively, with time. The results showed that the energy aware routed with ACO provided feasible routing solutions for the source node that provided the sensor network at its lifetime and security at the time of authentication.

Originality/value

The proposed ACO is aware of energy routing protocol that has been analyzed and compared with the energy utilization with respect to the sensor area network which uses power resources effectively.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 10 August 2022

Shoayee Dlaim Alotaibi

Be that as it may, BC is computationally costly, has restricted versatility and brings about critical transmission capacity upward and postpones, those seems not to be fit with…

63

Abstract

Purpose

Be that as it may, BC is computationally costly, has restricted versatility and brings about critical transmission capacity upward and postpones, those seems not to be fit with Internet of Things (IoT) setting. A lightweight scalable blockchain (LSB) which is improved toward IoT necessities is suggested by the authors and investigates LSB within brilliant house setup like an agent model to enable more extensive IoT apps. Less asset gadgets inside brilliant house advantage via any unified chief which lays out common units for correspondence also cycles generally approaching and active solicitations.

Design/methodology/approach

Federated learning and blockchain (BC) have drawn in huge consideration due to the unchanging property and the relevant safety measure and protection benefits. FL and IoT safety measures’ difficulties can be conquered possibly by BC.

Findings

LSB accomplishes fragmentation through shaping any overlaid web with more asset gadgets mutually deal with a public BC and federated learning which assures complete protection also security.

Originality/value

This overlaid is coordinated as without error bunches and reduces extra efforts, also batch leader will be with answer to handle commonly known BCs. LSB joins some of advancements which also includes computations related to lesser weighing agreement, optimal belief also throughput regulatory body.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 12 May 2022

Naresh Kattekola and Shubhankar Majumdar

This paper aims to implement a novel design of approximate comparator which can be suitable for image processing applications.

Abstract

Purpose

This paper aims to implement a novel design of approximate comparator which can be suitable for image processing applications.

Design/methodology/approach

Here, the N-bit approximate comparator is implemented by taking reference of N as 2-, 4- and 8-bit. The design analyses the fractional change in error to bit in several bit formats. The final implementation of approximate comparator design application compares the structural similarity index, colour test and extraction of an image to the results.

Findings

The novel approximate comparator was designed using 2-, 4- and 8-bit to explore N-bit comparator expressions. The implementation, computations, evaluation of errors, applications and the design constraints were executed using Python and Synopsys, respectively. The computations, evaluation of errors, applications and the design constraints were executed using Python and Synopsys, respectively.

Originality/value

This paper presents the N-bit accurate and approximate comparator which is novel over the existing design of comparators.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 5 February 2024

Ahsan Haghgoei, Alireza Irajpour and Nasser Hamidi

This paper aims to develop a multi-objective problem for scheduling the operations of trucks entering and exiting cross-docks where the number of unloaded or loaded products by…

Abstract

Purpose

This paper aims to develop a multi-objective problem for scheduling the operations of trucks entering and exiting cross-docks where the number of unloaded or loaded products by trucks is fuzzy logistic. The first objective function minimizes the maximum time to receive the products. The second objective function minimizes the emission cost of trucks. Finally, the third objective function minimizes the number of trucks assigned to the entrance and exit doors.

Design/methodology/approach

Two steps are implemented to validate and modify the proposed model. In the first step, two random numerical examples in small dimensions were solved by GAMS software with min-max objective function as well as genetic algorithms (GA) and particle swarm optimization. In the second step, due to the increasing dimensions of the problem and computational complexity, the problem in question is part of the NP-Hard problem, and therefore multi-objective meta-heuristic algorithms are used along with validation and parameter adjustment.

Findings

Therefore, non-dominated sorting genetic algorithm (NSGA-II) and non-dominated ranking genetic algorithm (NRGA) are used to solve 30 random problems in high dimensions. Then, the algorithms were ranked using the TOPSIS method for each problem according to the results obtained from the evaluation criteria. The analysis of the results confirms the applicability of the proposed model and solution methods.

Originality/value

This paper proposes mathematical model of truck scheduling for a real problem, including cross-docks that play an essential role in supply chains, as they could reduce order delivery time, inventory holding costs and shipping costs. To solve the proposed multi-objective mathematical model, as the problem is NP-hard, multi-objective meta-heuristic algorithms are used along with validation and parameter adjustment. Therefore, NSGA-II and NRGA are used to solve 30 random problems in high dimensions.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 1 January 2024

Masoud Parsi, Vahid Baradaran and Amir Hossein Hosseinian

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of…

Abstract

Purpose

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of offshore projects and their environmental-degrading effects have been embraced as well. The durations of activities are uncertain in this model. The developed formulation is tri-objective that seeks to minimize the expected time, total cost and CO2 emission of all projects.

Design/methodology/approach

A new version of the multiobjective multiagent optimization (MOMAO) algorithm has been proposed to solve the amalgamated model. To empower the MOMAO, various procedures of this algorithm have been modified based on the multiattribute utility theory (MAUT) technique. Along with the MOMAO, this study has employed four other meta-heuristic methodologies to solve the model as well.

Findings

The outputs of the MOMAO have been put to test against four other optimizers in terms of convergence, diversity, uniformity and computation times. The results of the Mean Ideal Distance (MID) metric have revealed that the MOMAO has strongly prevailed its rival optimizers. In terms of diversity of the acquired solutions, the MOMAO has ranked the first among all employed optimizers since this algorithm has offered the best solutions in 56.66 and 63.33% of the test problems regarding the diversification metric and hyper-volume metrics. Regarding the uniformity of results, which is measured through the spacing metric (SP), the MOMAO has presented the best SP values in more than 96% of the test problems. The MOMAO has needed more computation times in comparison to its rivals.

Practical implications

A real case study comprising two concurrent offshore projects has been offered. The proposed formulation and the MOMAO have been implemented for this case study, and their effectiveness has been appraised.

Originality/value

Very few studies have focused on presenting an integrated formulation for the stochastic multiproject scheduling and material ordering problems. The model embraces some of the characteristics of the offshore projects which have not been adequately studied in the literature. Limited capacities of the offshore platforms and cargo vessels have been embedded in the proposed model. The offshore platforms have spatial limitations in storing the required materials. The vessels are also capacitated and they also have limited shipment capacities. Some of the required materials need to be transported from the base to the offshore platform via a fleet of cargo vessels. The workforces and equipment can become idle on the offshore platform due to material shortage. Various offshore-related costs have been integrated as a minimization objective function in the model. The cargo vessels release CO2 detrimental emissions to the environment which are sought to be minimized in the developed formulation. To the best of the authors' knowledge, the MOMAO has not been sufficiently employed as a solution methodology for the stochastic multiproject scheduling and material ordering problems.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 26 March 2024

Manuel Rossetti, Juliana Bright, Andrew Freeman, Anna Lee and Anthony Parrish

This paper is motivated by the need to assess the risk profiles associated with the substantial number of items within military supply chains. The scale of supply chain management…

Abstract

Purpose

This paper is motivated by the need to assess the risk profiles associated with the substantial number of items within military supply chains. The scale of supply chain management processes creates difficulties in both the complexity of the analysis and in performing risk assessments that are based on the manual (human analyst) assessment methods. Thus, analysts require methods that can be automated and that can incorporate on-going operational data on a regular basis.

Design/methodology/approach

The approach taken to address the identification of supply chain risk within an operational setting is based on aspects of multiobjective decision analysis (MODA). The approach constructs a risk and importance index for supply chain elements based on operational data. These indices are commensurate in value, leading to interpretable measures for decision-making.

Findings

Risk and importance indices were developed for the analysis of items within an example supply chain. Using the data on items, individual MODA models were formed and demonstrated using a prototype tool.

Originality/value

To better prepare risk mitigation strategies, analysts require the ability to identify potential sources of risk, especially in times of disruption such as natural disasters.

Details

Journal of Defense Analytics and Logistics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2399-6439

Keywords

1 – 10 of 934