Search results

1 – 10 of 105
Article
Publication date: 12 November 2013

A. Aissi, S. Bensihamedi, A. Bouafia, A. Saihia and L. Belagra

This paper presents continuous monitoring results of an instrumented embankment behaviour built on compressible soil. In order to better understand of the embankment behaviour and…

Abstract

This paper presents continuous monitoring results of an instrumented embankment behaviour built on compressible soil. In order to better understand of the embankment behaviour and its foundation, geotechnical investigations, measurements of the monitoring data, interstitial overpressure evolution as well as numerical modelling with soft soil model are analysed. The findings highlight various factors resulting in the failure of the infrastructure. The loading program has proven to be incompatible, which subsequently resulted in an excess of pore pressures. The numerical modelling results have illustrated clearly the behaviour of the embankment particularly, the horizontal displacements and the interstitial overpressure.

Details

World Journal of Engineering, vol. 10 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 March 2020

Mohammed Y. Fattah and Basma A. Dawood

This study aims to predict the volume changes and collapse potential (CP) associated with the changes in soil suction by using the pressure cell and the effect of initial load on…

Abstract

Purpose

This study aims to predict the volume changes and collapse potential (CP) associated with the changes in soil suction by using the pressure cell and the effect of initial load on soil suction. Three types of gypseous soils have been experimented in this study, sandy gypseous soil from different parts of Iraq. A series of collapse tests were carried out using the oedometer device [single oedometer test (SOT) and double oedometer test (DOT)]. In addition, large-scale model with soil dimensions 700 × 700 × 600 mm was used to show the effect of water content changes in different relations (collapse with time, stress with time, suction with time, etc.).

Design/methodology/approach

A series of collapse tests were carried out using the oedometer device (SOT and DOT). In addition, a large-scale model with soil dimensions 700 × 700 × 600 mm was used to show the effect of water content changes in different relations (collapse with time, stress with time, suction with time, etc.).

Findings

The CP increases with the increasing of the void ratio for each soil. For each soil, the CP decreased when the initial degree of saturation increased. Kerbala soil with gypsum content (30%) revealed collapse value higher than Tikrit soil with gypsum content (55%) under the same initial conditions of water content and density, this is because the higher the Cu value of Kerbala soil is, the more well-graded the soil will be. Upon wetting, the smaller particles or fractions of the well-graded soil tend to fill in the existing voids, resulting in a lower void ratio as compared to the poorly graded one. Consequently, soils with high Cu value tend to collapse more than poorly graded ones. The compressibility of the soil is low when loaded under unsaturated condition, the CP for samples tested in the DOTs under stress level 800 kPa are greater than those obtained from collapse test at a stress level of 200 kPa.

Originality/value

The initial value of suction for all soils increases with initial water content decreases.

Details

World Journal of Engineering, vol. 17 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 April 2023

Soumaya Hadri, Souhila Rehab Bekkouche and Salah Messast

The paper aims to present an experimental and numerical investigation of the load–settlement behavior of soil reinforced by stone column, as well as to evaluate the plane strain…

Abstract

Purpose

The paper aims to present an experimental and numerical investigation of the load–settlement behavior of soil reinforced by stone column, as well as to evaluate the plane strain unit cell model for the analysis of stone columns.

Design/methodology/approach

The numerical analysis was done using both axisymmetric and plane strain models. The elastic perfectly plastic behavior of Mohr–Coulomb was adopted for both soil and column material. The numerical results of this study were validated by the comparison with the in-situ measurements of a full-scale loading test on a stone column. This study also evaluated the effect of different parameters involved in the design of a stone column, including Young’s modulus of the column material, column diameter, spacing between the stone columns and Poisson’s ratio of the column material.

Findings

After the numerical simulation, the results from both axisymmetric and plane strain models are quite comparable. In addition, the numerical results revealed that the stone column with low spacing, a large diameter and a high Young’s modulus indicated better behavior against the settlement.

Originality/value

The axisymmetric unit cell model was used in many numerical studies on the behavior of stone columns. In the present work, a field load test on stone column was simulated using a plane strain unit cell model. This research adds that the plane strain unit cell model can be used to predict the settlement of reinforced soil with stone columns.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 July 2011

H.I. Park and Y.T. Kim

Reinforced lightweight soil (RLS) consisting of dredged soil, cement, air‐foam, and waste fishing net is considered to be an eco‐friendly backfilling material because it provides…

1250

Abstract

Purpose

Reinforced lightweight soil (RLS) consisting of dredged soil, cement, air‐foam, and waste fishing net is considered to be an eco‐friendly backfilling material because it provides a means to recycle both dredged soil and waste fishing net. It may be difficult to find an optimum mixing ratio of RLS considering the design criteria and the construction's situation using the limited test results because the unconfined compressive strength is complicatedly influenced by various mixing ratios of admixtures. As a result, in order to expedite the field application of RLS, an appropriate prediction method is needed. The paper aims to address these issues.

Design/methodology/approach

In this study, an artificial neural network (ANN) model that was based on experimental test results performed on various mixing ratios, was developed to predict the unconfined compressive strength of RLS.

Findings

It was found that the unconfined compressive strength of RLS at a given mixing ratio could be reasonably estimated using the developed neural network model. In addition, sensitivity analysis was also conducted to evaluate the effect of mixing conditions on the compressive strength of RLS.

Practical implications

RLS is considered to be environmentally friendly because it provides a means to recycle both dredged soil and waste fishing net. The contractors could use the proposed ANN model as an alternative method to predict the strength of RLS with a specific mixing ratio.

Originality/value

This paper reveals that the developed ANN model can be served as a simple and reliable predictive tool for the strength of RLS without excessive laboratory tests for various admixture contents. An optimum admixture ratio of composed materials to get a designed strength could be easily found by using the proposed ANN model.

Details

Engineering Computations, vol. 28 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1991

S. SADIKU

Using the Heaviside operator, a single partial differential equation is obtained for the space‐time variation of the pore pressure in two adjacent soil layers undergoing…

Abstract

Using the Heaviside operator, a single partial differential equation is obtained for the space‐time variation of the pore pressure in two adjacent soil layers undergoing simultaneous consolidation. A closed form expression for the solution to the problem is given as a generalized Fourier series. The coordinate functions of the series are the eigenfunctions of the composite medium obtained computationally through the application of the extended Galerkin method.

Details

Engineering Computations, vol. 8 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 1995

G. Shabha and K. Kuhwald

Aims to investigate the problems of subsidence and theirimplications for domestic buildings by addressing a number of questions.What are the main causes of land subsidence? What…

1594

Abstract

Aims to investigate the problems of subsidence and their implications for domestic buildings by addressing a number of questions. What are the main causes of land subsidence? What is the potential damage of subsidence, and how can this be prevented and reduced? What are the financial and legal implications for all those involved? Looks critically at the effect of subsidence due to coal mining on residential properties and the particular problems encountered by valuation surveyors. Briefly examines the history and past operation of the compensation system to assess its effectiveness. Finally, considers the fears inherent following privatization, along with future proposals.

Details

Structural Survey, vol. 13 no. 3
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 9 February 2022

Farzaneh Moshtaghian and Esmatullah Noorzai

This research has been conducted with a view to creating a framework to integrate risk management based on building information modeling (BIM) information.

Abstract

Purpose

This research has been conducted with a view to creating a framework to integrate risk management based on building information modeling (BIM) information.

Design/methodology/approach

In this research, all the information related to the construction of a residential project including 3D, 4D and 5D BIM models and the execution and control phases information was collected, and the risk list was determined for each activity accordingly.

Findings

The present study has suggested a framework for risk management in order to optimize project changes.

Originality/value

The lack of integration between 3D, 4D and 5D modeling besides execution information is a fundamental problem in many projects. The gap between these two groups of information will lead to improper management and late decisions, eventually imposing unforeseen delays and cost overruns. Risk management by the means of adopting a new approach has been addressed in recent studies using new methods, such as BIM and its associated technologies, some of which were mentioned in the review of theoretical literature in this research.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 December 2002

Roger W. Johnson

This paper suggests a framework for the systematic investigation of cracking in low‐rise buildings. The procedure to follow is described in detail and monitoring equipment is…

2581

Abstract

This paper suggests a framework for the systematic investigation of cracking in low‐rise buildings. The procedure to follow is described in detail and monitoring equipment is recommended. A data‐gathering and assessment methodology is presented and the important question of whether the cracking is “significant” is considered.

Details

Structural Survey, vol. 20 no. 5
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 4 December 2023

Alolote Ibim Amadi

This study aims to investigate ground-related design deficiencies as potential avenues of avoidable cost overruns, discernible from the geotechnical practices of highway agencies…

Abstract

Purpose

This study aims to investigate ground-related design deficiencies as potential avenues of avoidable cost overruns, discernible from the geotechnical practices of highway agencies in the Niger Delta region of Nigeria.

Design/methodology/approach

The study deploys an interpretivist qualitative methodology to provide a detailed descriptive analysis of the design-related geotechnical practices of highway agencies during the pre-contract phase of highway projects. Semi-structured interviews were conducted with in-house professionals, consultants and contractors affiliated with the three highway agencies in the Niger Delta and thematically analysed to identify significant deviations from geotechnical best practices.

Findings

The study outcome shows that during the pre-contract phase, a chain of design-related geotechnical shortcomings has plagued highway projects executed in the Niger Delta. This view of practice uncovered in this study demonstrates a culture of significant deviation from best practice recommendations, which could plausibly contribute to the history of significant project cost overruns recorded in the region.

Originality/value

The study qualitatively spotlights gaps in the practice of highway agencies and reinforces the need for a re-orientation of the attitude to risk management, to give geotechnical concerns a priority in the financial management of highway projects executed in the Niger Delta region of Nigeria.

Details

Journal of Financial Management of Property and Construction , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 1 March 1992

M.J. SARAN and K. RUNESSON

An implicit type algorithm for the integration of hypoelastic constitutive equations is proposed for large strain and large rotation conditions. Constitutive relations are derived…

Abstract

An implicit type algorithm for the integration of hypoelastic constitutive equations is proposed for large strain and large rotation conditions. Constitutive relations are derived in a deformation‐neutralized form. This provides the basis for integration in time resulting in an incremental tensor relation. Proposed algorithm can be considered as a generalization of the closest‐point‐projection method in the sense that the projection property applies to a ‘midstep’ rather than the final stress state. Hill's yield criterion under plane stress conditions suitable for metal‐forming applications is used in presented benchmark problems. Numerical results are discussed illustrating the accuracy of the algorithm for different values of the midstep parameter.

Details

Engineering Computations, vol. 9 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 105