Search results

1 – 10 of over 1000
Article
Publication date: 1 August 1995

F. H. Hamdan and P. J. Dowling

This paper, which is concerned with fluid‐structure interactionanalysis, is a sequel to our earlier paper which gave an introduction to thenumerical treatment of such systems. The…

Abstract

This paper, which is concerned with fluid‐structure interaction analysis, is a sequel to our earlier paper which gave an introduction to the numerical treatment of such systems. The paper is divided into five main sections. In the first two, a state‐of‐the‐art review on near‐field and far‐field fluid structure interaction is presented. In attempting to highlight where current research should be directed, only the most widely used computer codes are reviewed in the third section. Conclusions are presented in the fourth section.

Article
Publication date: 1 June 1949

W.J. Duncan

THE paper reviews the problem of the influence of the walls of a closed tunnel in increasing the velocity in the neighbourhood of a model under test. It is shown that, for a…

Abstract

THE paper reviews the problem of the influence of the walls of a closed tunnel in increasing the velocity in the neighbourhood of a model under test. It is shown that, for a perfect fluid, considerations of continuity suffice to establish an exact value of the mean interference velocity for any cross‐section of the tunnel. This mean interference velocity is expressed in terms of the perturbation velocity which would be caused by the same model in the absence of the walls. The linearized theory of subsonic compressible flow is applied and it is shown that the interference velocity for a small two or three dimensional model is increased in proportion to l/β3, where β=√(l—M2) and M is the Mach number. Interference caused by a body with a long parallel middle body, the influence of the wake from a model and of the boundary layer on the tunnel walls are briefly considered.

Details

Aircraft Engineering and Aerospace Technology, vol. 21 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 8 August 2008

J.G. Zheng, T.S. Lee and S.H. Winoto

The aim of the study is to present a piecewise parabolic method (PPM) for numerical simulation of barotropic and nonbarotropic two‐fluid flows in more than one space dimension.

Abstract

Purpose

The aim of the study is to present a piecewise parabolic method (PPM) for numerical simulation of barotropic and nonbarotropic two‐fluid flows in more than one space dimension.

Design/methodology/approach

In transition layers of two components, a fluid mixture model system is introduced. Besides, conserving the mass, momentum and energy for the mixture, the model is supplemented with an advection equation for the volume fraction of one of the two fluid components to recover the pressure and track interfaces. The Tait and stiffened gas equations of state are used to describe thermodynamic properties of the barotropic and nonbarotropic components, respectively. To close the model system, a mixture equation of state is derived. The classical third‐order PPM is extended to the two‐fluid case and used to solve the model system.

Findings

The feasibility of this method has been demonstrated by good results of sample applications. Each of the material interfaces is resolved with two grid cells and there is no any pressure oscillation on the interfaces.

Research limitations/implications

With the mixture model system, there may be energy gain or loss for the nonbarotropic component on the material interfaces.

Practical implications

The method can be applied to a wide range of practical problems.

Originality/value

The method is simple. It not only has the advantage of Lagrangian‐type schemes but also keeps the robustness of Eulerian schemes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 February 2018

Gino Cortellessa, Fausto Arpino, Simona Di Fraia and Mauro Scungio

In this work, a new two-phase version of the finite element-based Artificial Compressibility (AC) Characteristic-Based Split (CBS) algorithm is developed and applied for the first…

Abstract

Purpose

In this work, a new two-phase version of the finite element-based Artificial Compressibility (AC) Characteristic-Based Split (CBS) algorithm is developed and applied for the first time to heat and mass transfer phenomena in porous media with associated phase change. The purpose of this study is to provide an alternative for the theoretical analysis and numerical simulation of multiphase transport phenomena in porous media. Traditionally, the more complex Separate Flow Model was used in which the vapour and liquid phases were considered as distinct fluids and mathematically described by the conservation laws for each phase separately, resulting in a large number of governing equations.

Design/methodology/approach

Even though the adopted mathematical model presents analogies with the conventional multicomponent mixture flow model, it is characterized by a considerable reduction in the number of the differential equations for the primary variables. The fixed-grid numerical formulation can be applied to the resolution of general problems that may simultaneously include a superheated vapour region, a two-phase zone and a sub-cooled liquid region in a single physical domain with irregular and moving phase interfaces in between. The local thermal non-equilibrium model is introduced to consider the heat exchange between fluid and solid within the porous matrix.

Findings

The numerical model is verified considering the transport phenomena in a homogenous and isotropic porous medium in which water is injected from one side and heated from the other side, where it leaves the computational domain in a superheated vapour state. Dominant forces are represented by capillary interactions and two-phase heat conduction. The obtained results have been compared with the numerical data available in the scientific literature.

Social implications

The present algorithm provides a powerful routine tool for the numerical modelling of complex two-phase transport processes in porous media.

Originality/value

For the first time, the stabilized AC-CBS scheme is applied to the resolution of compressible viscous flow transport in porous materials with associated phase change. A properly stabilized matrix inversion-free procedure employs an adaptive local time step that allows acceleration of the solution process even in the presence of large source terms and low diffusion coefficients values (near the phase change point).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 December 2019

Eric Goncalves Da Silva and Philippe Parnaudeau

The purpose of this paper is to quantify the relative importance of the multiphase model for the simulation of a gas bubble impacted by a normal…

Abstract

Purpose

The purpose of this paper is to quantify the relative importance of the multiphase model for the simulation of a gas bubble impacted by a normal shock wave in water. Both the free-field case and the collapse near a wall are investigated. Simulations are performed on both two- and three-dimensional configurations. The main phenomena involved in the bubble collapse are illustrated. A focus on the maximum pressure reached during the collapse is proposed.

Design/methodology/approach

Simulations are performed using an inviscid compressible homogeneous solver based on different systems of equations. It consists in solving different mixture or phasic conservation laws and a transport-equation for the gas volume fraction. Three-dimensional configurations are considered for which an efficient massively parallel strategy was developed. The code is based on a finite volume discretization for which numerical fluxes are computed with a Harten, Lax, Van Leer, Contact (HLLC) scheme.

Findings

The comparison of three multiphase models is proposed. It is shown that a simple four-equation model is well-suited to simulate such strong shock-bubble interaction. The three-dimensional collapse near a wall is investigated. It is shown that the intensity of pressure peaks on the wall is drastically increased (more than 200 per cent) in comparison with the cylindrical case.

Research limitations/implications

The study of bubble collapse is a key point to understand the physical mechanism involved in cavitation erosion. The bubble collapse close to the wall has been addressed as the fundamental mechanism producing damage. Its general behavior is characterized by the formation of a water jet that penetrates through the bubble and the generation of a blast wave during the induced collapse. Both the jet and the blast wave are possible damaging mechanisms. However, the high-speed dynamics, the small spatio-temporal scales and the complicated physics involved in these processes make any theoretical and experimental approach a challenge.

Practical implications

Cavitation erosion is a major problem for hydraulic and marine applications. It is a limiting point for the conception and design of such components.

Originality/value

Such a comparison of multiphase models in the case of a strong shock-induced bubble collapse is clearly original. Usually models are tested separately leading to a large dispersion of results. Moreover, simulations of a three-dimensional bubble collapse are scarce in the literature using such fine grids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 November 2009

Diana F. Spears, David R. Thayer and Dimitri V. Zarzhitsky

In light of the current international concerns with security and terrorism, interest is increasing on the topic of using robot swarms to locate the source of chemical hazards. The…

Abstract

Purpose

In light of the current international concerns with security and terrorism, interest is increasing on the topic of using robot swarms to locate the source of chemical hazards. The purpose of this paper is to place this task, called chemical plume tracing (CPT), in the context of fluid dynamics.

Design/methodology/approach

This paper provides a foundation for CPT based on the physics of fluid dynamics. The theoretical approach is founded upon source localization using the divergence theorem of vector calculus, and the fundamental underlying notion of the divergence of the chemical mass flux. A CPT algorithm called fluxotaxis is presented that follows the gradient of this mass flux to locate a chemical source emitter.

Findings

Theoretical results are presented confirming that fluxotaxis will guide a robot swarm toward chemical sources, and away from misleading chemical sinks. Complementary empirical results demonstrate that in simulation, a swarm of fluxotaxis‐guided mobile robots rapidly converges on a source emitter despite obstacles, realistic vehicle constraints, and flow regimes ranging from laminar to turbulent. Fluxotaxis outperforms the two leading competitors, and the theoretical results are confirmed experimentally. Furthermore, initial experiments on real robots show promise for CPT in relatively uncontrolled indoor environments.

Practical implications

A physics‐based approach is shown to be a viable alternative to existing mainly biomimetic approaches to CPT. It has the advantage of being analyzable using standard physics analysis methods.

Originality/value

The fluxotaxis algorithm for CPT is shown to be “correct” in the sense that it is guaranteed to point toward a true source emitter and not be fooled by fluid sinks. It is experimentally (in simulation), and in one case also theoretically, shown to be superior to its leading competitors at finding a source emitter in a wide variety of challenging realistic environments.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 11 November 2013

Pietro Marco Congedo, Gianluca Geraci, Rémi Abgrall, Valentino Pediroda and Lucia Parussini

– This paper aims to deal with an efficient strategy for robust optimization when a large number of uncertainties are taken into account.

Abstract

Purpose

This paper aims to deal with an efficient strategy for robust optimization when a large number of uncertainties are taken into account.

Design/methodology/approach

ANOVA analysis is used in order to perform a variance-based decomposition and to reduce stochastic dimension based on an appropriate criterion. A massive use of metamodels allows reconstructing response surfaces for sensitivity indexes in the design variables plan. To validate the proposed approach, a simplified configuration, an inverse problem on a 1D nozzle flow, is solved and the performances compared to an exact Monte Carlo reference solution. Then, the same approach is applied to the robust optimization of a turbine cascade for thermodynamically complex flows.

Findings

First, when the stochastic dimension is reduced, the error on the variance between the reduced and the complete problem was found to be roughly estimated by the quantity (1− TSI )×100, where TSI is the summation of TSI concerning the variables respecting the TSI criterion. Second, the proposed strategy allowed obtaining a converged Pareto front with a strong reduction of computational cost by preserving the same accuracy.

Originality/value

Several articles exist in literature concerning robust optimization but very few dealing with a global approach for solving optimization problem affected by a large number of uncertainties. Here, a practical and efficient approach is proposed that could be applied also to realistic problems in engineering field.

Details

Engineering Computations, vol. 30 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1937

G.N. Patterson

DUCT systems of various types are used on aircraft. The efficiency of the systems depends upon the losses in the duct. A corner in the duct may produce a large resistance to flow…

Abstract

DUCT systems of various types are used on aircraft. The efficiency of the systems depends upon the losses in the duct. A corner in the duct may produce a large resistance to flow if it is not carefully designed. Research on the problem of corner resistance has been undertaken by a number of investigators. Their results show that the design of a corner is very important. In the following discussion the more significant results are summarized and some factors governing the design of an efficient corner are set forth.

Details

Aircraft Engineering and Aerospace Technology, vol. 9 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 October 2004

M.F. Webster, I.J. Keshtiban and F. Belblidia

We introduce a second‐order accurate time‐marching pressure‐correction algorithm to accommodate weakly‐compressible highly‐viscous liquid flows at low Mach number. As the…

Abstract

We introduce a second‐order accurate time‐marching pressure‐correction algorithm to accommodate weakly‐compressible highly‐viscous liquid flows at low Mach number. As the incompressible limit is approached (Ma ≈ 0), the consistency of the compressible scheme is highlighted in recovering equivalent incompressible solutions. In the viscous‐dominated regime of low Reynolds number (zone of interest), the algorithm treats the viscous part of the equations in a semi‐implicit form. Two discrete representations are proposed to interpolate density: a piecewise‐constant form with gradient recovery and a linear interpolation form, akin to that on pressure. Numerical performance is considered on a number of classical benchmark problems for highly viscous liquid flows to highlight consistency, accuracy and stability properties. Validation bears out the high quality of performance of both compressible flow implementations, at low to vanishing Mach number. Neither linear nor constant density interpolations schemes degrade the second‐order accuracy of the original incompressible fractional‐staged pressure‐correction scheme. The piecewise‐constant interpolation scheme is advocated as a viable method of choice, with its advantages of order retention, yet efficiency in implementation.

Details

Engineering Computations, vol. 21 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 December 2019

Bahador Abolpour and Rahim Shamsoddini

Increasing the temperature of gas flows passing through hot tubes is one of the industrial interests. Operations in the gas phase with high temperature variations involve…

Abstract

Purpose

Increasing the temperature of gas flows passing through hot tubes is one of the industrial interests. Operations in the gas phase with high temperature variations involve engineers with the compressible fluids problems. The paper aims to discuss this issue.

Design/methodology/approach

In this study, a mathematical three-dimensional turbulent model is applied for investigating the heat transfer and laminar gas flow inside the thermal developing zone of a hot tube. The Favre Averaged Navier–Stokes and energy equations and also the Reynolds Stress Model are numerically solved to obtain the fluid velocity and temperature profiles inside this the tube. This model is validated using the experimental data and also well-known formulas in this science.

Findings

Finally, effects of inlet volumetric flow rate, heating conditions of the tube wall and tube angle on the temperature and velocity distributions of the gaseous phase inside this zone are investigated.

Originality/value

The compressible laminar gas flow and also heat transfer in the thermal developing zone of a hot tube is studied using a three-dimensional turbulent model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 1000