Search results

1 – 10 of 15
Article
Publication date: 7 December 2023

Luca Sciacovelli, Aron Cannici, Donatella Passiatore and Paola Cinnella

The purpose of the paper is to analyse the performances of closures and compressibility corrections classically used in turbulence models when applied to highly-compressible…

Abstract

Purpose

The purpose of the paper is to analyse the performances of closures and compressibility corrections classically used in turbulence models when applied to highly-compressible turbulent boundary layers (TBLs) over flat plates.

Design/methodology/approach

A direct numerical simulation (DNS) database of TBLs, covering a wide range of thermodynamic conditions, is presented and exploited to perform a priori analyses of classical and recent closures for turbulent models. The results are systematically compared to the “exact” terms computed from DNS.

Findings

The few compressibility corrections available in the literature are not found to capture DNS data much better than the uncorrected original models, especially at the highest Mach numbers. Turbulent mass and heat fluxes are shown not to follow the classical gradient diffusion model, which was shown instead to provide acceptable results for modelling the vibrational turbulent heat flux.

Originality/value

The main originality of the present paper resides in the DNS database on which the a priori tests are conducted. The database contains some high-enthalpy simulations at large Mach numbers, allowing to test the performances of the turbulence models in the presence of both chemical dissociation and vibrational relaxation processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 January 2024

Mauro Minervino and Renato Tognaccini

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb…

Abstract

Purpose

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb vector-based far-field methods are used at the scope, and the paper starts with extending recent steady compressible formulas to the unsteady regime.

Design/methodology/approach

Exact vortical force formulas are derived considering inertial or non-inertial frames, viscous or inviscid flows, fixed or moving bodies. Numerical applications to a NACA0012 airfoil oscillating in pure plunging motion are illustrated, considering subsonic and transonic flow regimes. The total force accuracy and sensitivity to the control volume size is first analysed, then the axial force is decomposed and results are compared to the inviscid force (thrust) and to the steady force (drag).

Findings

Two total axial force decompositions in thrust and drag contributions are proposed, providing satisfactory results. An additional force decomposition is also formulated, which is independent of the arbitrary pole appearing in vortical formulas. Numerical inaccuracies encountered in inertial reference frames are eliminated, and the extended formulation also allows obtaining an accurate force prediction in presence of shock waves.

Originality/value

No thrust/drag bookkeeping methodology was actually available for oscillating airfoils in viscous and compressible flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 January 2023

Naren Shankar Radha Krishnan, Irish Angelin S., Ganesan V.G. and Sathish Kumar K.

In comparison to a nozzle with a larger/finite separation distance (Thanigaiarasu et al., 2019), a thin-lip nozzle (Srinivasarao et al., 2017) minimizes drag. Coaxial nozzles with…

Abstract

Purpose

In comparison to a nozzle with a larger/finite separation distance (Thanigaiarasu et al., 2019), a thin-lip nozzle (Srinivasarao et al., 2017) minimizes drag. Coaxial nozzles with thin lips are an appropriate tool for studying high subsonic jets because it does not create a dominant re-circulation zone. This study aims to analyze the characteristic of separation distances, between primary and secondary nozzles, within the range of 0.7–3.2 mm which can be considered a thin lip.

Design/methodology/approach

A separation distance of 0.7  (Papamoschou, 2004), 1.7  and 2.65 mm (Lovaraju and Rathakrishnan, 2011) is considered for the present study. The main nozzle exit Mach number is maintained at a subsonic condition of Mach 0.6, and the co-flowing nozzle exit Mach number is varied from 0% (secondary jet stopped/single jet) to 100% (Mach 0.6) in steps of 20% with respect to the main nozzle exit Mach number. A comparison was made between these velocity ratios for all three lip thicknesses in the present study. Design mesh and analysis were done by using Gambit 2.6.4 and Fluent 6.12. Velocity contours and turbulence contours were studied for qualitative analysis.

Findings

When lip thickness increases from 0.7 to 2.65 mm, the potential core length (PCL) of the primary jet decreases marginally. Additionally, the PCL of the primary jet elongates significantly as the velocity ratio increases. The primary shear layer is dominant at 20% co-flow (20 PCF), less dominant at 60% co-flow (60 PCF) and almost disappeared at 100% co-flow (100 PCF). Concurrently, the secondary shear layer almost disappeared in 20 PCF, dominant in 60 PCF and more dominant in 100 PCF. Different zones such as initial merging, intermediate and fully merged zones are quantitatively and qualitatively analyzed.

Practical implications

Co-flow nozzle is used in turbofan engine exhaust. The scaled-down model of a turbofan engine has been analyzed. Core length is directly proportional to the jet noise. The PCL signifies the jet noise reduction in a high-speed jet. For a low-velocity ratio, the potential core is reduced and hence can reduce the jet noise. At the same time, as the velocity ratio increases, the mass flow rate of the coaxial increases. The increase in the mass flow increases the thrust of the engine. The aircraft engine designer should analyze the requirement of the aircraft and choose the optimal velocity ratio coaxial nozzle for the engine exhaust (Papamoschou, 2004).

Originality/value

There have been many research studies carried out previously at various lip thickness such as 0.4  (Georgiadis, 2003), 0.7  (Papamoschou, 2004), 1.5  (Srinivasarao et al., 2014a), 1.7  (Sharma et al., 2008), 2  (Naren, Thanigaiarasu and Rathakrishnan, 2016), 2.65  (Lovaraju and Rathakrishnan, 2011), 3  (Inturiet al., 2022) and 3.2 mm (Perumal et al., 2020). However, there is no proper study to vary the lip thickness in this range from 0.7 to 3.2 mm to understand the flow behavior of a co-flowing jet.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 8 November 2023

Armando Di Meglio, Nicola Massarotti, Samuel Rolland and Perumal Nithiarasu

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical…

Abstract

Purpose

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical correlations between pressure gradient and velocity.

Design/methodology/approach

The numerical correlations origin from computational fluid dynamics simulations, conducted at the microscopic scale, in which three fluid channels representing the porous media are taken into account. More specifically, for a specific frequency and stack porosity, the oscillating pressure input is varied, and the velocity and the pressure-drop are post-processed in the frequency domain (Fast Fourier Transform analysis).

Findings

It emerges that the viscous component of pressure drop follows a quadratic trend with respect to velocity inside the stack, while the inertial component is linear also at high-velocity regimes. Furthermore, the non-linear coefficient b of the correlation ax + bx2 (related to the Forchheimer coefficient) is discovered to be dependent on frequency. The largest value of the b is found at low frequencies as the fluid particle displacement is comparable to the stack length. Furthermore, the lower the porosity the higher the Forchheimer term because the velocity gradients at the stack geometrical discontinuities are more pronounced.

Originality/value

The main novelty of this work is that, for the first time, non-linear losses of a parallel plate stack are investigated from a macroscopic point of view and summarised into a non-linear correlation, similar to the steady-state and well-known Darcy–Forchheimer law. The main difference is that it considers the frequency dependence of both Darcy and Forchheimer terms. The results can be used to enhance the analysis and design of thermoacoustic devices, which use the kind of stacks studied in the present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 January 2023

Quy Dong To and Guy Bonnet

The purpose of this paper is to solve the local problem involving strong contrast heterogeneous conductive material, with application to gas-filled porous media with both perfect…

Abstract

Purpose

The purpose of this paper is to solve the local problem involving strong contrast heterogeneous conductive material, with application to gas-filled porous media with both perfect and imperfect Kapitza boundary conditions at the bi-material interface. The effective parameters like the dynamic conductivity and the thermal permeability in the acoustics of porous media are also derived from the cell solution.

Design/methodology/approach

The Fourier transform method is used to solve frequency-dependent heat transfer problems. The periodic Lippmann–Schwinger integral equation in Fourier space with source term is first formulated using discrete Green operators and modified wavevectors, which can then be solved by iteration schemes.

Findings

Numerical examples show that the schemes converge fast and yield accurate results when compared with analytical solution for benchmark problems.

Originality/value

The formulation of the method is constructed using static and dynamic Green operators and can be applied to pixelized microstructure issued from tomography images.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 December 2023

Oskar Szulc, Piotr Doerffer, Pawel Flaszynski and Marianna Braza

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Abstract

Purpose

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Design/methodology/approach

The concept is based on the introduction of a tangentially moving wall upstream of the shock wave and in the interaction region. The SBLI control mechanism may be implemented as a closed belt floating on an air cushion, sliding over two cylinders and forming the outer skin of the suction side of the airfoil. The presented exploratory numerical study is conducted with SPARC solver (steady 2D RANS). The effect of the moving wall is presented for the NACA 0012 airfoil operating in transonic conditions.

Findings

To assess the accuracy of obtained solutions, validation of the computational model is demonstrated against the experimental data of Harris, Ladson & Hill and Mineck & Hartwich (NASA Langley). The comparison is conducted not only for the reference (impermeable) but also for the perforated (permeable) surface NACA 0012 airfoils. Subsequent numerical analysis of SBLI control by moving wall confirms that for the selected velocity ratios, the method is able to improve the shock-upstream boundary layer and counteract flow separation, significantly increasing the airfoil aerodynamic performance.

Originality/value

The moving wall concept as a means of normal shock wave–turbulent boundary layer interaction and shock-induced separation control has been investigated in detail for the first time. The study quantified the necessary operational requirements of such a system and practicable aerodynamic efficiency gains and simultaneously revealed the considerable potential of this promising idea, stimulating a new direction for future investigations regarding SBLI control.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 30 October 2023

Robin Gustafsson

Artifacts are rarely used today to visualize thoughts, insights, and ideas in strategy work. Rather, textual and verbal communication dominates. This is despite artifacts and…

Abstract

Artifacts are rarely used today to visualize thoughts, insights, and ideas in strategy work. Rather, textual and verbal communication dominates. This is despite artifacts and visual representations holding many advantages as tools to create and make sense of strategy in teamwork. To advance our understanding of the benefits of visual aids in strategy work, I synthesize insights from cognitive psychology, neuroscience, and management research. My analysis exposes distinct neurocognitive advantages concerning attention, emotion, learning, memory, intuition, and creativity from visual sense-building. These advantages increase when sense-building activities are playful and storytelling is used.

Details

Cognitive Aids in Strategy
Type: Book
ISBN: 978-1-83797-316-3

Keywords

Article
Publication date: 9 April 2024

Selma Bahi and Mohamed Nabil Houhou

This study aims to investigate the behavior of different types of stone columns, including the short and floating columns, as well as the ordinary and the geosynthetic encased…

Abstract

Purpose

This study aims to investigate the behavior of different types of stone columns, including the short and floating columns, as well as the ordinary and the geosynthetic encased stone columns (OSC and GESC). The effectiveness of the geosynthetic encasement and the impact of the installation using the lateral expansion method on the column performance is evaluated through a three-dimensional (3D) unit cell numerical analysis.

Design/methodology/approach

A full 3D numerical analysis is carried out using the explicit finite element code PLAXIS 3D to examine the installation influence on settlement reduction (ß), lateral displacement (Ux) and vertical displacement (Uz) relative to different values of lateral expansion of the column (0% to 15%).

Findings

The findings demonstrate the superior performance of GESC, particularly short columns outperforming floating counterparts. This enhanced performance is attributed to the combined effects of geosynthetic encasement and increased lateral expansion. Notably, these strategies contribute significantly to decreasing lateral displacement (Ux) at the column’s edge and reducing vertical displacement (Uz) under the rigid footing.

Originality/value

In contrast to previous studies that examined the installation effect of OSC contexts, this paper presents a comprehensive investigation into the effect of geosynthetic encasement and the installation effects using the lateral expansion method in very soft soil, using 3D numerical simulation. The study emphasizes the significance of the consideration of geosynthetic encasement and lateral expansion of the column during the design process to enhance column performance.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 July 2023

Yongliang Wang

The purpose of this study is to investigate the unstable propagation of parallel hydraulic fractures induced by interferences of adjacent perforation clusters and thermal…

Abstract

Purpose

The purpose of this study is to investigate the unstable propagation of parallel hydraulic fractures induced by interferences of adjacent perforation clusters and thermal diffusion. Fracture propagation in the process of multistage fracturing of a rock mass is deflected owing to various factors. Hydrofracturing of rock masses in deep tight reservoirs involves thermal diffusion, fluid flow and deformation of rock between the rock matrix and fluid in pores and fractures.

Design/methodology/approach

To study the unstable propagation behaviours of three-dimensional (3D) parallel hydraulic fractures induced by the interferences of adjacent perforation clusters and thermal diffusion, a 3D engineering-scale numerical model is established under different fracturing scenarios (sequential, simultaneous and alternate fracturing) and different perforation cluster spacings while considering the thermal-hydro-mechanical coupling effect. Stress disturbance region caused by fracture propagation in a deep tight rock mass is superimposed and overlaid with multiple fractures, resulting in a stress shadow effect and fracture deflection.

Findings

The results show that the size of the stress shadow areas and the interaction between fractures increase with decreasing multiple perforation cluster spacing in horizontal wells. Alternate fracturing can produce more fracture areas and improve the fracturing effect compared with those of sequential and simultaneous fracturing. The larger the temperature gradient between the fracturing fluid and rock matrix, the stronger the thermal diffusion effect, and the effect of thermal diffusion on the fracture propagation is significant.

Originality/value

This study focuses on the behaviours of the unstable dynamic propagation of 3D parallel hydraulic fractures induced by the interferences of adjacent perforation clusters and thermal diffusion. Further, the temperature field affects the fracture deflection requires could be investigated from the mechanisms; this paper is to study the unstable propagation of fractures in single horizontal well, which can provide a basis for fracture propagation and stress field disturbance in multiple horizontal wells.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 October 2023

Jacek Mieloszyk, Andrzej Tarnowski and Tomasz Goetzendorf-Grabowski

Designing new aircraft that are state-of-the-art and beyond always requires the development of new technologies. This paper aims to present lessons learned while designing…

Abstract

Purpose

Designing new aircraft that are state-of-the-art and beyond always requires the development of new technologies. This paper aims to present lessons learned while designing, building and testing new UAVs in the configuration of the flying wing. The UAV contains a number of aerodynamic devices that are not obvious solutions and use the latest manufacturing technology achievements, such as 3D printing.

Design/methodology/approach

The design solutions were applied on an airworthy aircraft and checked during test flights. The process was first conducted on the smaller UAV, and based on the test outcomes, improvements were made and then applied on the larger version of the UAV, where they were verified.

Findings

A number of practical findings were identified. For example, the use of 3D printing technology for manufacturing integrated pressure ports, investigation of the adverse yaw effect on the flying wing configuration and the effectiveness of winglet rudders in producing yawing moment.

Practical implications

All designed devices were tested in practice on the flying aircraft. It allowed for improved aircraft performance and handling characteristics. Several of the technologies used improved the speed and quality of aerodynamic device design and manufacturing, which also influences the reliability of the aircraft.

Originality/value

The paper presents how 3D printing technology can be utilized for manufacturing of aerodynamic devices. Specially developed techniques for control surface design, which can affect adverse yaw problem and aircraft handling characteristics, were described.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 15