Search results

1 – 10 of 882
Article
Publication date: 27 November 2018

Mubing Yu, Xiaodong Yu, Xuhang Zheng, Hang Qu, Tengfei Yuan and Daige Li

This paper aims to describe a theoretical and experimental research concerning influence of recess shape on comprehensive lubrication performance of high speed and heavy load…

Abstract

Purpose

This paper aims to describe a theoretical and experimental research concerning influence of recess shape on comprehensive lubrication performance of high speed and heavy load hydrostatic thrust bearing with a constant flow.

Design/methodology/approach

The lubrication performance of a hydrostatic thrust bearing with different recess shape under the working conditions of high speed and heavy load has been simulated by using computational fluid dynamics and finite volume method.

Findings

It is found that the comprehensive lubrication performance of a hydrostatic thrust bearing with circular recess is optimal. The results demonstrate that recess shape has a great influence on the lubrication performance of the hydrostatic thrust bearing.

Originality/value

The simulation results indicate that to get an improved performance from a hydrostatic thrust bearing with constant flow, a proper selection of the recess shape is essential.

Article
Publication date: 8 January 2018

Jun-peng Shao, Guang-dong Liu, Xiao-dong Yu, Yan-qin Zhang, Xiu-li Meng and Hui Jiang

The purpose of this paper is to describe a simulation and experimental research concerning the effect of recess depth on the lubrication performance of a hydrostatic thrust…

Abstract

Purpose

The purpose of this paper is to describe a simulation and experimental research concerning the effect of recess depth on the lubrication performance of a hydrostatic thrust bearing by constant rate flow.

Design/methodology/approach

The computational fluid dynamics and finite volume method have been used to compute the lubrication characteristics of an annular recess hydrostatic thrust bearing with different recess depths. The performances are oil recess pressure, oil recess temperature and oil film velocity. The recess depth has been optimized. A test rig is established for testing the pressure field of the structure of hydrostatic thrust bearing after recess depth optimization, and experimental results show that experimental data are basically identical with the simulation results, which demonstrates the validity of the proposed numerical simulation method.

Findings

The results demonstrate that the oil film temperature decreases and the oil film pressure first increases and then decreases with an increase in the recess depth, but oil film velocity is constant. To sum up comprehensive lubrication performance, the recess depth of 3.5 mm is its optimal value for the annular recess hydrostatic thrust bearing.

Originality/value

The computed results indicate that to get an improved performance from a constant flow hydrostatic thrust bearing, a proper selection of the recess depth is essential.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 January 2021

Waheed Ur Rehman, Xinhua Wang, Yingchun Chen, Xiaogao Yang, Zia Ullah, Yiqi Cheng and Marya Kanwal

The purpose of this paper is to improve static/dynamic characteristics of active-controlled hydrostatic journal bearing by using fractional order control techniques and optimizing…

Abstract

Purpose

The purpose of this paper is to improve static/dynamic characteristics of active-controlled hydrostatic journal bearing by using fractional order control techniques and optimizing algorithms.

Design/methodology/approach

Active lubrication has ability to overcome the unpredictable harsh environmental conditions which often lead to failure of capillary controlled traditional hydrostatic journal bearing. The research develops a mathematical model for a servo feedback-controlled hydrostatic journal bearing and dynamics of model is analyzed with different control techniques. The fractional-order PID control system is tuned by using particle swarm optimization and Nelder mead optimization techniques with the help of using multi-objective performance criteria.

Findings

The results of the current research are compared with previously published theoretical and experimental results. The proposed servo-controlled active bearing system is studied under a number of different dynamic situations and constraints of variable spindle speed, external load, temperature changes (viscosity) and variable bearing clearance (oil film thickness). The simulation results show that the proposed system has better performance in terms of controllability, faster response, stability, high stiffness and strong resistance.

Originality/value

This paper develops an accurate mathematical model for servo-controlled hydrostatic bearing with fractional order controller. The results are in excellent agreement with previously published literature.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0272

Article
Publication date: 6 April 2021

Hekun Jia, Zeyuan Zhou, Bifeng Yin, Huiqin Zhou and Bo Xu

The purpose of this study is to investigate the influence of dimple radius, depth and density on the lubrication performance of the plunger.

315

Abstract

Purpose

The purpose of this study is to investigate the influence of dimple radius, depth and density on the lubrication performance of the plunger.

Design/methodology/approach

A lubrication model was adopted to consider eccentricity and deformation during the working process of the plunger, and a rig test was performed to confirm the simulation results. The texture was fabricated using laser surface texturing.

Findings

The simulation results suggested that when dimple radius or depth increases, oil film thickness of the plunger increases before decreasing, and asperity friction displays an opposite trend. Therefore, appropriate microdimple texture could facilitate lubrication performance improvement and reduce the wear. Microdimples were then lased on the plunger surface, and a basic tribological test was conducted to validate the simulation results. The experimental results suggested that the average friction coefficient decreased from 0.18 to 0.13, a reduction of 27.8%.

Social implications

The introduction of microdimple on a plunger couple to reduce friction and improve lubrication is expected to provide a new approach to developing high-performance plunger couple and improve the performance of the internal combustion engine. If applied, the surface texture could help reduce friction by around 27% and cap the cost relative to the plugger friction.

Originality/value

The microdimple texture was introduced into the plunger couple of a vehicle to reduce the friction and improve the performance. Findings suggested that surface texture could be used in the automotive industry to improve oil efficiency and lubrication performance.

Peer review

The peer review history for this article is available at: http://dx.doi.org/10.1108/ILT-07-2020-0259.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 July 2021

Song Quan, Yong Guo, Xuedong Liu, Zhewu Chen and Yudi Liu

This paper aims to study the lubrication and sealing performance on the textured piston pair under the cross action of the shape and structure parameters. This paper further…

Abstract

Purpose

This paper aims to study the lubrication and sealing performance on the textured piston pair under the cross action of the shape and structure parameters. This paper further carries out the optimization design of low energy consumption hydraulic impact piston pair.

Design/methodology/approach

Based on the characteristics of the ring gap seal piston pair, the flow field analysis model of the whole film gap is established for its periodic treatment. The friction power loss of the piston pair is defined as the evaluation index of the lubrication performance and the leakage power loss as the evaluation index of the sealing performance. The orthogonal test design and CFD software were used to analyze the lubrication and sealing performance of the textured piston pair.

Findings

The cross action of shape and structure factors has a great influence of the lubrication and sealing performance on the textured piston pair. Clearance and shape parameters have great influence on it, while seal length and depth diameter ratio have little influence. The sealing performance of conical textured piston pair is good, while the lubrication performance of square textured piston pair is good. The primary and secondary order of influence of shape and structure on energy consumption on piston pair is B (seal clearance) > C (texture shape) > D (area ratio) > A (seal length) > E (depth diameter ratio).

Originality/value

Breaking the defect of local optimization design on traditional piston pair structure, then find the matching relationship of structural parameters on textured piston pair. Further improve the lubrication and sealing performance of the piston pair, and provide reference for the global optimization design of the low energy consumption hydraulic impact piston pair.

Details

Industrial Lubrication and Tribology, vol. 74 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 June 2018

Xia He, Wenling Liao, Guorong Wang, Lin Zhong and Mengyuan Li

The purpose of this study is to investigate the influence of texture on hydrodynamic lubrication performance of slide surface from the perspective of skewness and kurtosis.

291

Abstract

Purpose

The purpose of this study is to investigate the influence of texture on hydrodynamic lubrication performance of slide surface from the perspective of skewness and kurtosis.

Design/methodology/approach

Hydrodynamic lubrication theoretical model of textured surface was established based on two-dimensional Reynolds equation, and finite difference algorithm was used as the numerical approach in the paper. Skewness and kurtosis of surface were obtained by discrete calculation.

Findings

Numerical analysis results show that the influence law of texture types on skewness, kurtosis and hydrodynamic lubrication was the more negative skewness and higher kurtosis, the better hydrodynamic lubrication performance when texture cross section contour and geometric parameters were the same. Similarly, the same influence law of skewness, kurtosis and hydrodynamic lubrication performance by texture cross-section contour was observed. However, it was unable to evaluate the effect of texture angle on hydrodynamic lubrication performance of textured surface from the perspective of skewness and kurtosis.

Originality/value

This paper confirms the feasibility of evaluating influence of texture types and texture cross-section contour on hydrodynamic lubrication performance from the perspective of skewness and kurtosis and provides a way to optimize texture type and texture cross section.

Details

Industrial Lubrication and Tribology, vol. 70 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 June 2022

Biao Li, Jun Sun, Hu Wang and Xiao Zhang

Under the action of many factors, the shaft of the shaft-journal bearing system inevitably moves along the axis direction at work, which will lead to the axial movement of journal…

Abstract

Purpose

Under the action of many factors, the shaft of the shaft-journal bearing system inevitably moves along the axis direction at work, which will lead to the axial movement of journal in the bearing. However, at present, only the dynamic and squeezing effects caused by the relative rotation and squeezing motion between the journal and the bearing surfaces are considered in the lubrication analysis of misaligned journal bearing and the axial movement of journal in the actual use of bearing is not considered. The purpose of this paper is to analyze the lubrication of journal bearing considering the axial movement of journal.

Design/methodology/approach

Taking the shaft-journal bearing system as the research object, a hydrodynamic lubrication model of journal bearing is established considering the axial movement and misalignment of journal. The finite difference method is used to solve the Reynolds equation for the lubrication analysis.

Findings

The axial movement of journal has a significant influence on the lubrication characteristics of misaligned journal bearing. The larger the misalignment angles of journal or the eccentricity of bearing, the greater the influence of the axial movement of journal on the lubrication performance of bearing. The lower the speed of bearing or the smaller the clearance of bearing, the more significant the influence of the axial movement of journal on the lubrication performance of bearing is.

Originality/value

The influence of the axial movement of journal on the lubrication performance of journal bearing is studied under different misalignment angles of journal, working conditions and clearances of bearing. The results of this paper are helpful to the design and research of the lubrication performance of journal bearing.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 October 2023

Yi Shen, Tao He and Xiaoya Gong

Harmonic gears always work under different operating conditions and may usually break down due to lubrication failures, while its lubrication mechanism is still not clearly…

Abstract

Purpose

Harmonic gears always work under different operating conditions and may usually break down due to lubrication failures, while its lubrication mechanism is still not clearly understood. This paper aims to present a lubrication model comprehensively considering the influence of contact geometry, lubrication properties and three-dimensional (3D) real surface roughness to analyze the lubrication performance under different conditions.

Design/methodology/approach

Based on the discrete convolution-fast Fourier transformation with duplicated padding and quasi-system numerical methods, the lubrication model for harmonic gears is developed, which is verified by comparing results with available lubrication data.

Findings

The effects of meshing process, working conditions and 3D roughness on the lubrication characteristics are discussed. From the calculated cases, the increase in rotational speed and decrease of applied torque may increase the film thickness, enhancing the lubrication performance of harmonic gears. It is also observed that proper surface roughness can be used for lubrication design.

Originality/value

The research results can provide theoretical guidance for improving lubrication performance and reducing friction/wear of the harmonic gear interfaces. This study can be promoted to various engineering scenarios of harmonic gears, such as industrial robots, space-driven agencies and precision measuring instruments.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2022

Guotao Zhang, Weijie Cai, Xiaoyi Wang, Junpeng Xu, Yanguo Yin and Xicheng Wei

The purpose of this paper is to put forward the lubrication model of oil bearing and enrich the design theory under the condition of mixed lubrication.

Abstract

Purpose

The purpose of this paper is to put forward the lubrication model of oil bearing and enrich the design theory under the condition of mixed lubrication.

Design/methodology/approach

A mixed lubrication model of bilayer porous bearing is established. The effects of the working conditions on the lubrication performance and seepage behavior were analyzed.

Findings

Results show that the oil film pressure mainly occurs in the bearing convergence zone and contact pressure mainly occurs near the minimum film thickness. The oil infiltrates into the porous matrix in the contact area and precipitates out to the friction surface at the inlet of the contact area. The oil seepage velocity and dynamic pressure effect at the friction interface can be improved by reasonably matching the load and speed. With the decrease of the external load or increase of the rotating speed, the lubrication performance becomes well.

Originality/value

This study provides a reference for the design and application of oil bearing under harsh working conditions.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2024

Jun Cheng and Chunxing Gu

As the crucial support component of the propeller power system, the reliability of the operation of submersible pumps is influenced by the lubrication performance of…

Abstract

Purpose

As the crucial support component of the propeller power system, the reliability of the operation of submersible pumps is influenced by the lubrication performance of water-lubricated thrust bearings. When the water-lubricated thrust bearings are under start-stop or heavy load conditions, the effect of surface morphology is crucial as the mixed lubrication regime is encountered. This paper aims to develop one mixed lubrication model for the water-lubricated thrust bearings to predict the effects of surface skewness, kurtosis and roughness orientation on the loading carrying capacity and tribological behavior.

Design/methodology/approach

This paper developed one improved mixed lubrication model specifically for the water-lubricated thrust bearing system. In this model, the hydrodynamic model was improved by using the height of the rough surface and its probability density function, combined with the average flow model. The asperity contact model was improved by using the equation for the Pearson system of frequency curves to characterize the non-Gaussian aspect of surface roughness distribution.

Findings

According to the results, negative skewness, large kurtosis and lateral surface pattern can improve the tribological performance of water-lubricated thrust bearings. Optimizing the surface morphology is a reasonable design method that can improve the performance of water-lubricated thrust bearings.

Originality/value

In this paper, one mixed lubrication model specifically for the water-lubricated thrust bearing with the effect of surface roughness into consideration was developed. Based on the developed model, the effect of surface morphology on tribological behavior can be evaluated.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0247/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 882