Search results

1 – 10 of over 6000
Article
Publication date: 11 October 2023

Megavannan Mani, Thiyagu Murgaiyan and Pradeep Kumar Krishnan

This study focuses on the structural performance assessment of hybrid polymer composites for pick-and-place robot grippers used in critical infrastructure. This research involved…

Abstract

Purpose

This study focuses on the structural performance assessment of hybrid polymer composites for pick-and-place robot grippers used in critical infrastructure. This research involved the creation of composite materials with different nanoparticle concentrations, followed by extensive testing to assess the mechanical properties of the materials, such as strength, stiffness and durability.

Design/methodology/approach

The composites comprised bidirectional interply inclined carbon fibers (C), S-glass fibers (SG), E-glass (EG), an epoxy matrix and silica nanoparticles (SNiPs). During construction, the composite materials must be carefully layered using quasi-static sequence techniques (45°C1/45°SG2/45°EG2/45°C1/45°EG2/45°SG2/45°C1) to obtain the epoxy matrix reinforcement and bonding using 0, 2, 4 and 6 wt. % of silica nanoparticles.

Findings

According to various test findings, the 4 wt. % of SNiPs added to polymer plates exhibits the maximum strength outcomes. The average results of the tensile and flexural tests for the polymer composite plates with 4 wt. % addition SNiPs were 127.103 MPa and 223.145 MPa, respectively. The average results of the tensile and flexural tests for the plates with 0 wt.% SNiPs were 115.457 MPa and 207.316 MPa, respectively.

Originality/value

The authors hereby attest that the research paper they have submitted is the result of their own independent and unique labor. All of the sources from which the thoughts and passages were derived have been properly credited. The work has not been submitted for publication anywhere and is devoid of any instances of plagiarism.

Highlights

 

  1. The study enhances the engineering materials for innovative applications.

  2. The study explores the mechanical behavior of carbon/S-glass/E-glass fiber composites.

  3. Silica nanoparticles were enhancing mechanical characteristics of the composite structure.

The study enhances the engineering materials for innovative applications.

The study explores the mechanical behavior of carbon/S-glass/E-glass fiber composites.

Silica nanoparticles were enhancing mechanical characteristics of the composite structure.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 June 2023

Pedro Antunes, José A. Pino, Mathews Nkhoma and Nguyen Hoang Thuan

Business process modeling faces a difficult balance: on the one hand, organizations seek to enact, control and automate business processes through formal structures (procedures…

Abstract

Purpose

Business process modeling faces a difficult balance: on the one hand, organizations seek to enact, control and automate business processes through formal structures (procedures and rules). On the other hand, organizations also seek to embrace flexibility, change, innovation, value orientation, and dynamic capabilities, which require informal structures (unique user experiences). Addressing this difficulty, the authors propose the composite approach, which integrates formal and informal process structures. The composite approach adopts a socio-material conceptual lens, where both material and human agencies are supported.

Design/methodology/approach

The study follows a design science research methodology. An innovative artifact – the composite approach – is introduced. The composite approach is evaluated in an empirical experiment.

Findings

The experimental results show that the composite approach improves model understandability and situation understandability.

Research limitations/implications

This research explores the challenges and opportunities brought by adopting a socio-material conceptual lens to represent business processes.

Originality/value

The study contributes an innovative hybrid approach for modeling business processes, articulating coordination and contextual knowledge. The proposed approach can be used to improve model understandability and situation understandability. The study also extends the socio-material conceptual lens over process modeling with a theoretical framework integrating coordination and contextual knowledge.

Details

Business Process Management Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 5 December 2023

S. Rama Krishna, J. Sathish, Talari Rahul Mani Datta and S. Raghu Vamsi

Ensuring the early detection of structural issues in aircraft is crucial for preserving human lives. One effective approach involves identifying cracks in composite structures…

Abstract

Purpose

Ensuring the early detection of structural issues in aircraft is crucial for preserving human lives. One effective approach involves identifying cracks in composite structures. This paper employs experimental modal analysis and a multi-variable Gaussian process regression method to detect and locate cracks in glass fiber composite beams.

Design/methodology/approach

The present study proposes Gaussian process regression model trained by the first three natural frequencies determined experimentally using a roving impact hammer method with crystal four-channel analyzer, uniaxial accelerometer and experimental modal analysis software. The first three natural frequencies of the cracked composite beams obtained from experimental modal analysis are used to train a multi-variable Gaussian process regression model for crack localization. Radial basis function is used as a kernel function, and hyperparameters are optimized using the negative log marginal likelihood function. Bayesian conditional probability likelihood function is used to estimate the mean and variance for crack localization in composite structures.

Findings

The efficiency of Gaussian process regression is improved in the present work with the normalization of input data. The fitted Gaussian process regression model validates with experimental modal analysis for crack localization in composite structures. The discrepancy between predicted and measured values is 1.8%, indicating strong agreement between the experimental modal analysis and Gaussian process regression methods. Compared to other recent methods in the literature, this approach significantly improves efficiency and reduces error from 18.4% to 1.8%. Gaussian process regression is an efficient machine learning algorithm for crack localization in composite structures.

Originality/value

The experimental modal analysis results are first utilized for crack localization in cracked composite structures. Additionally, the input data are normalized and employed in a machine learning algorithm, such as the multi-variable Gaussian process regression method, to efficiently determine the crack location in these structures.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 June 2023

Prashant Kumar Choudhary

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Abstract

Purpose

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Design/methodology/approach

A novel optimization method is developed to predict the optimal fiber orientation in composite cylindrical shell. The optimization is carried out by coupling analytical and finite element (FE) results with a genetic algorithm (GA)-based optimization scheme developed in MATLAB. Linear eigenvalue were performed to evaluate the buckling behaviour of composite cylinders. In analytical part, besides the buckling analysis, Tsai-Wu failure criteria are employed to analyse the failure of the composite structure.

Findings

The optimal result obtained through this study is compared with traditionally used laminates with 0, 90, ±45 orientation. The results suggest that the application of this novel optimization algorithm leads to an increase of 94% in buckling strength.

Originality/value

The proposed optimal fiber orientation can provide a practical and efficient way for the designers to evaluate the buckling pressure of the composite shells in the design stage.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 25 April 2024

Saadet Güler, Ahmet Yavaş, Berk Özler and Ahmet Çagri Kilinç

Three-dimensional (3D) printing is popular for many applications including the production of photocatalysts. This paper aims to focus on developing of 3D-printed…

Abstract

Purpose

Three-dimensional (3D) printing is popular for many applications including the production of photocatalysts. This paper aims to focus on developing of 3D-printed photocatalyst-nano composite lattice structure. Digital light processing (DLP) 3D printing of photocatalyst composites was performed using photosensitive resin mixed with 0.5% Wt. of TiO2 powder and varying amounts (0.025% Wt. to 0.2% Wt.) of graphene nanoplatelet powder. The photocatalytic efficiency of DLP 3D-printed photocatalyst TiO2 composite was investigated, and the effects of nano graphite powder incorporation on the photocatalytic activity, thermal and mechanical properties were investigated.

Design/methodology/approach

Methods involve 3D computer-aided design modeling, printing parameters and comprehensive characterization techniques such as structural equation modeling, X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared (FTIR) and mechanical testing.

Findings

Results highlight successful dispersion and characteristics of TiO2 and graphene nanoplatelet (GNP) powders, intricate designs of 3D-printed lattice structures, and the influence of GNPs on thermal behavior and mechanical properties.

Originality/value

The study suggests applicability in wastewater treatment and environmental remediation, showcasing the adaptability of 3 D printing in designing effective photocatalysts. Future research should focus on practical applications and the long-term durability of these 3D-printed composites.

Graphical abstract

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2023

Zhe Du, Changjie Chen and Xinhou Wang

Stab-resistant body armor (SRBA) is used to protect the body from sharp knives. However, most SRBA materials currently have the disadvantages of large weight and thickness. This…

Abstract

Purpose

Stab-resistant body armor (SRBA) is used to protect the body from sharp knives. However, most SRBA materials currently have the disadvantages of large weight and thickness. This paper aims to prepare lightweight and high-performance SRBA by 3D printing truss structure and resin-filling method.

Design/methodology/approach

The stab resistance truss structure was prepared by the fused deposition modeling method, and the composite structure was formed after filling with resin for dynamic and quasi-static stab tests. The optimized structural plate can meet the standard GA68-2019. Digital image correlation technology was used to analyze the local strain changes during puncture. The puncture failure mode was summarized by the final failure morphologies. The explicit dynamics module in ANSYS Workbench was used to analyze the design of the overlapped structure stab resistance process in this paper.

Findings

The stab resistance performance of the 3D-printed structural plate is affected by the internal filling pattern. The stab resistance performance of 3D-printed structural parts was significantly improved after resin filling. The 50%-diamond-PLA-epoxy, with a thickness of only 5 mm was able to meet the stab resistance standard. Resins are used to increase the strength and hardness of the material but also to increase crack propagation and reduce the toughness of the material. The overlapping semicircular structure was inspired by the exoskeleton structure of the demon iron beetle, which improved the stab resistance between gaps. The truss structure can effectively disperse stress for toughening. The filled resin was reinforced by absorbing impact energy.

Originality/value

The 3D-printed resin-filled truss structure can be used to prepare high-performance stab resistance structural plates, which balance the toughness and strength of the overall structure and ultimately reduce the thickness and weight of the SRBA.

Article
Publication date: 7 August 2023

Jiayuan Yan, Xiaoliang Zhang and Yanming Wang

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in…

Abstract

Purpose

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in the tribological properties of PI-based composites, especially the effects of nanofiller selection, composite structure design and material modification on the tribological and mechanical properties of PI-matrix composites.

Design/methodology/approach

The preparation technology of PI and its composites is introduced and the effects of carbon nanotubes (CNTs), carbon fibers (CFs), graphene and its derivatives on the mechanical and tribological properties of PI-based composites are discussed. The effects of different nanofillers on tensile strength, tensile modulus, coefficient of friction and wear rate of PI-based composites are compared.

Findings

CNTs can serve as the strengthening and lubricating phase of PI, whereas CFs can significantly enhance the mechanical properties of the matrix. Two-dimensional graphene and its derivatives have a high modulus of elasticity and self-lubricating properties, making them ideal nanofillers to improve the lubrication performance of PI. In addition, copolymerization can improve the fracture toughness and impact resistance of PI, thereby enhancing its mechanical properties.

Originality/value

The mechanical and tribological properties of PI matrix composites vary depending on the nanofiller. Compared with nanofibers and nanoparticles, layered reinforcements can better improve the friction properties of PI composites. The synergistic effect of different composite fillers will become an important research system in the field of tribology in the future.

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 June 2023

Jennifer Beem, Iain Hannah and A.E. Hosoi

Conventional sportswear design does not take into account body size changes that many individuals experience (e.g. through pregnancy, puberty, menstruation, etc.). This paper aims…

Abstract

Purpose

Conventional sportswear design does not take into account body size changes that many individuals experience (e.g. through pregnancy, puberty, menstruation, etc.). This paper aims to detail both the construction of a novel wearable shape-adaptive composite and a new meso-scale material design method, which enables the optimal creation of these structures.

Design/methodology/approach

This work reports the development of a predictive computational model and a corresponding design tool, including results of a tensile testing protocol to validate their outputs. A mathematical model was developed to explore the geometric parameter space of a bi-stable composite system, which then feeds into an optimization design tool.

Findings

The authors found that it is possible to fabricate shape-adaptive composites via 3D printing bi-stable structures, and adhering them to a base textile. Experimental mechanical tensile testing showed good agreement with the predictive model in mid-range unit cell amplitude designs. To illustrate how the optimization design tool works this paper details two design examples, one for expected shape change during pregnancy and one for targeted compression for high performance swimwear. The optimized design parameters are shown to replicate the target parameters, however there is potential for further improvement with a lower stiffness base textile.

Originality/value

Although there is a wealth of research on multi-stable mechanisms, there is a dearth of studies that apply these structures in the wearable composite space. Additionally, there is a need for design methods which leverage the structurally-programmable capabilities of multi-stable structures to create optimized, high-performance functional composites.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 April 2024

Goksel Saracoglu, Serap Kiriş, Sezer Çoban, Muharrem Karaaslan, Tolga Depci and Emin Bayraktar

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

18

Abstract

Purpose

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

Design/methodology/approach

Notched and unnotched tensile tests of composites made of wool only and hybridized with a glass fiber layer were carried out, and fracture behavior and toughness at macro scale were determined. They were exposed to electromagnetic waves between 8 and 18 GHz frequencies using two horn antennas.

Findings

The keratin and lignin layer on the surface of the wool felt caused lower values to be obtained compared to the mechanical values given by pure epoxy. However, the use of wool felt in the symmetry layer of the laminated composite material provided higher mechanical values than the composite with glass fiber in the symmetry layer due to the mechanical interlocking it created. The use of wool in fabric form resulted in an increase in the modulus of elasticity, but no change in fracture toughness was observed. As a result of the electromagnetic analysis, it was also seen in the electromagnetic analysis that the transmittance of the materials was high, and the reflectance was low throughout the applied frequency range. Hence, it was concluded that all of the manufactured materials could be used as radome material over a wide band.

Practical implications

Sheep wool is an easy-to-supply and low-cost material. In this paper, it is presented that sheep wool can be evaluated as a biocomposite material and used for radome applications.

Originality/value

The combined evaluation of felt and fabric forms of a natural and inexpensive reinforcing element such as sheep wool and the combined evaluation of fracture mechanics and electromagnetic absorption properties will contribute to the evaluation of biocomposites in aviation.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 October 2023

Ouided Dehas, Laidi Babouri, Yasmina Biskri and Jean-Francois Bardeau

This study aims to deal with both the development and mechanical investigations of unsaturated polyester matrix (UPR) composites containing recycled polyethylene terephthalate…

Abstract

Purpose

This study aims to deal with both the development and mechanical investigations of unsaturated polyester matrix (UPR) composites containing recycled polyethylene terephthalate (PET) fibers as new fillers.

Design/methodology/approach

UPR/PET fibers composites have been developed as mats by incorporating 5, 8, 13 and 18 parts per hundred of rubber (phr) of 6-, 10- and 15-mm length PET fibers from the recycling of postconsumer bottles. The mechanical and physical properties of the composites were investigated as a function of fiber content and length. A significant increase in stress at break and in ultimate stress (sr) were observed for composites reinforced with 5 and 8 phr of 15-mm length PET fibers. The Izod impact strength of UPR/mat PET fiber composites as a function of fiber rate and length showed that the 5 and 8 phr composites for the 15-mm length PET fiber have the optimal mechanical properties 13.55 and 10.50 Kj/m2, respectively. The morphological study showed that the strong adhesion resulting from the affinity of the PET fiber for the UPR matrix. The ductile fracture of materials reinforced with 5 and 8 phr is confirmed by the fiber deformation and fracture surface roughness.

Findings

This study concluded that the PET fiber enhances the properties of composites, a good correlation was observed between the results of the mechanical tests and the structural analysis revealing that for the lower concentrations, the PET fibers are well dispersed into the resin, but entanglements are evidenced when the fiber content increases.

Originality/value

It can be shown from scanning electron microscopy micrographs that the fabrication technique produced composites with good interfacial adhesion between PET fibers and UPR matrix.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 6000