Search results

1 – 10 of 233
Article
Publication date: 18 January 2024

Uğur Kemiklioğlu, Sermet Demir and Caner Yüksel

Adhesively bonded joints are used in many fields, especially in the automotive, marine, aviation, defense and outdoor industries. Adhesive bonding offers advantages over…

Abstract

Purpose

Adhesively bonded joints are used in many fields, especially in the automotive, marine, aviation, defense and outdoor industries. Adhesive bonding offers advantages over traditional mechanical methods, including the ability to join diverse materials, even load distribution and efficient thermal-electrical insulation. This study aims to investigate the mechanical properties of adhesively bonded joints, focusing on adherends produced with auxetic and flat surfaces adhered with varying adhesive thicknesses.

Design/methodology/approach

The research uses three-dimensional (3D)-printed materials, polyethylene terephthalate glycol and polylactic acid, and two adhesive types with ductile and brittle properties for single lap joints, analyzing their mechanical performance through tensile testing. The adhesion region of one of these adherends was formed with a flat surface and the other with an auxetic surface. Adhesively bonded joints were produced with 0.2, 0.3 and 0.4 mm bonding thickness.

Findings

Results reveal that auxetic adherends exhibit higher strength compared to flat surfaces. Interestingly, the strength of ductile adhesives in auxetic bonded joints increases with adhesive thickness, while brittle adhesive strength decreases with thicker auxetic bonds. Moreover, the auxetic structure displays reduced elongation under comparable force.

Originality/value

The findings emphasize the intricate interplay between adhesive type, bonded surface configuration of adherend and bonding thickness, crucial for understanding the mechanical behavior of adhesively bonded joints in the context of 3D-printed materials.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 February 2024

Dongsheng Wang, Xiaohan Sun, Yingchang Jiang, Xueting Chang and Xin Yonglei

Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms…

Abstract

Purpose

Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms areas, because of their excellent anticorrosion performance and relatively lower production costs. However, the properties of SCBS, including the mechanical strength, weldability and the anticorrosion behavior, have a direct relation with the manufacturing process and can affect their practical applications. This paper aims to review the application and the properties requirements of SCBS in marine environments to promote the application of this new material in more fields.

Design/methodology/approach

In this paper, the manufacturing process, welding and corrosion-resistant properties of SCBS were introduced systematically by reviewing the related literatures, and some results of the authors’ research group were also introduced briefly.

Findings

Different preparation methods, such as rolling composite, casting rolling composite, explosive composite, laser cladding and plasma arc cladding, as well as the process parameters, including the vacuum degree, rolling temperature, rolling reduction ratio, volume ratios of liquid to solid, explosive ratio and the heat treatment, influenced a lot on the properties of the SCBS through changing the interface microstructures. Otherwise, the variations in rolling temperature, pass, reduction and the grain size of clad steel also brought the dissimilarities of the mechanical properties, microhardness, bonding strength and toughness. Another two new processes, clad teeming method and interlayer explosive welding, deserve more attention because of their excellent microstructure control ability. The superior corrosion resistance of SCBS can alleviate the corrosion problem in the marine environment and prolong the service life of the equipment, but the phenomenon of galvanic corrosion should be noted as much as possible. The high dilution rate, welding process specifications and heat treatment can weaken the intergranular corrosion resistance in the weld area.

Originality/value

This paper summarizes the application of SCBS in marine environments and provides an overview and reference for the research of stainless-clad bimetallic steel.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 February 2024

Dat Tien Doan, Tuyet Phuoc Anh Mai, Ali GhaffarianHoseini, Amirhosein Ghaffarianhoseini and Nicola Naismith

This study aims to identify the primary research areas of modern methods of construction (MMC) along with its current trends and developments.

Abstract

Purpose

This study aims to identify the primary research areas of modern methods of construction (MMC) along with its current trends and developments.

Design/methodology/approach

A combination of bibliometric and qualitative analysis is adopted to examine 1,957 MMC articles in the Scopus database. With the support of CiteSpace 6.1.R6, the clusters, leading authors, journals, institutions and countries in the field of MMC are examined.

Findings

Offsite construction, inter-modular connections, augmenting output, prefabricated concrete beams and earthquake-resilient prefabricated beam–column steel joints are the top five research areas in MMC. Among them, offsite construction and inter-modular connections are significantly focused, with many research articles. The potential for collaboration, among prominent authors such as Wang, J., Liu, Y. and Wang, Y., explains the recent rapid growth of the MMC field of research. With a total of 225 articles, Engineering Structures is the journal that has published the most articles on MMC. China is the leading country in this field, and the Ministry of Education China is the top institution in MMC.

Originality/value

The findings of this study bear significant implications for stakeholders in academia and industry alike. In academia, these insights allow researchers to identify research gaps and foster collaboration, steering efforts toward innovative and impactful outcomes. For industries using MMC practices, the clarity provided on MMC techniques facilitates the efficient adoption of best practices, thereby promoting collaboration, innovation and global problem-solving within the construction field.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 17 May 2023

Abbas Rezaeian, Mona Mansoori and Amin Khajehdezfuly

Top-seat angle connection is known as one of the usual uncomplicated beam-to-column joints used in steel structures. This article investigates the fire performance of welded…

Abstract

Purpose

Top-seat angle connection is known as one of the usual uncomplicated beam-to-column joints used in steel structures. This article investigates the fire performance of welded top-seat angle connections.

Design/methodology/approach

A finite element (FE) model, including nonlinear contact interactions, high-temperature properties of steel, and material and geometric nonlinearities was created for accomplishing the fire performance analysis. The FE model was verified by comparing its simulation results with test data. Using the verified model, 24 steel-framed top-seat angle connection assemblies are modeled. Parametric studies were performed employing the verified FE model to study the influence of critical factors on the performance of steel beams and their welded angle joints.

Findings

The results obtained from the parametric studies illustrate that decreasing the gap size and the top angle size and increasing the top angles thickness affect fire behavior of top-seat angle joints and decrease the beam deflection by about 16% at temperatures beyond 570 °C. Also, the fire-resistance rating of the beam with seat angle stiffener increases about 15%, compared to those with and without the web stiffener. The failure of the beam happens when the deflections become more than span/30 at temperatures beyond 576 °C. Results also show that load type, load ratio and axial stiffness levels significantly control the fire performance of the beam with top-seat angle connections in semi-rigid steel frames.

Originality/value

Development of design methodologies for these joints and connected beam in fire conditions is delayed by current building codes due to the lack of adequate understanding of fire behavior of steel beams with welded top-seat angle connections.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 26 March 2024

Jose A. Fernández Gallardo and Ricardo Hernandez Rojas

The main objective of this research is to analyze satisfaction with tourist services linked to the concept of sustainability in the context of a visit to the so-called equestrian…

Abstract

Purpose

The main objective of this research is to analyze satisfaction with tourist services linked to the concept of sustainability in the context of a visit to the so-called equestrian show. The equestrian show adds values from the cultures that passed through the city. Specifically, the study focuses on tourist loyalty based on satisfaction with tourist services, satisfaction with the equestrian show and its overall quality. The fieldwork has been conducted in Córdoba, Spain. There are few studies on the relationship between tourist services linked to the concepts of sustainability and loyalty from the perspective of equestrian show management, making this a novel contribution to research.

Design/methodology/approach

The methodology used is based on a partial least squares structural equation modeling (PLS-SEM) approach.

Findings

To achieve the proposed objective, a structured questionnaire was used, and the results obtained confirm that satisfaction with tourist services linked to the concept of sustainability and the assessment of quality positively influence tourist loyalty. Consequently, they recommend returning to the destination and repeating the visit.

Originality/value

Heritage in Córdoba, Spain, is internationally recognized. Its uniqueness, with four world inscriptions along with the cultures that inhabited it, left a material heritage legacy in the city. Over time, this legacy has made it a magnet for visitors, making it essential to delve into its management and how concepts such as satisfaction with tourist services, combined with sustainability, impact the improvement of the visit.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 17 April 2023

Xiangou Zhang, Yuexing Wang, Xiangyu Sun, Zejia Deng, Yingdong Pu, Ping Zhang, Zhiyong Huang and Quanfeng Zhou

Au stud bump bonding technology is an effective means to realize heterogeneous integration of commercial chips in the 2.5D electronic packaging. The purpose of this paper is to…

Abstract

Purpose

Au stud bump bonding technology is an effective means to realize heterogeneous integration of commercial chips in the 2.5D electronic packaging. The purpose of this paper is to study the long-term reliability of the Au stud bump treated by four different high temperature storage times (200°C for 0, 100, 200 and 300 h).

Design/methodology/approach

The bonding strength and the fracture behavior are investigated by chip shear test. The experiment is further studied by microstructural characterization approaches such as scanning electron microscope, energy dispersive spectrometer and so on.

Findings

It is recognized that there were mainly three typical fracture models during the chip shear test among all the Au stud bump samples treated by high temperature storage. For solder bump before aging, the fracture occurred at the interface between the Cu pad and the Au stud bump. As the aging time increased, the fracture mainly occurred inside the Au stud bump at 200°C for 100 and 200 h. When aging time increased to 300 h, it is found that the fracture transferred to the interface between the Au stud bump and the Al Pad.

Originality/value

In addition, the bonding strength also changed with the high temperature storage time increasing. The bonding strength does not change linearly with the high temperature storage time increasing but decreases first and then increases. The investigation shows that the formation of the intermetallic compounds because of the reaction between the Au and Al atoms plays a key role on the bonding strength and fracture behavior variation.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 21 March 2024

Shu-Hua Wu and Edward C.S. Ku

This study aims to analyze how restaurants' collaboration with mobile food delivery applications (MFDAs) affects product development efficiency and argues that technological…

Abstract

Purpose

This study aims to analyze how restaurants' collaboration with mobile food delivery applications (MFDAs) affects product development efficiency and argues that technological capabilities moderate relational ties impact the joint decision-making and development efficiency of restaurant products.

Design/methodology/approach

A product development efficiency model was formulated using a resource-based view and real options theory. In all, 472 samples were collected from restaurants collaborating with MFDAs, and partial least squares structural equation modeling was applied to the proposed model.

Findings

The findings of this study indicate three factors are critical to the product development efficiency between restaurants and MFDAs; restaurants must develop a strong connection with the latter to ensure meals are consistently served promptly. Developers of MFDAs should use artificial intelligence analysis, such as order records of different genders and ages or various consumption attributes, to collaborate with restaurants.

Originality/value

To the best of the authors’ knowledge, this study is one of the few that considers the role of MFDAs as a product strategy for restaurant operations, and the factors the authors found can enhance restaurants’ product development efficiency. Second, as strategic artificial intelligence adaptation changes, collaborating firms and restaurants use such applications for product development to help consumers identify products.

Book part
Publication date: 5 April 2024

Alecos Papadopoulos

The author develops a bilateral Nash bargaining model under value uncertainty and private/asymmetric information, combining ideas from axiomatic and strategic bargaining theory…

Abstract

The author develops a bilateral Nash bargaining model under value uncertainty and private/asymmetric information, combining ideas from axiomatic and strategic bargaining theory. The solution to the model leads organically to a two-tier stochastic frontier (2TSF) setup with intra-error dependence. The author presents two different statistical specifications to estimate the model, one that accounts for regressor endogeneity using copulas, the other able to identify separately the bargaining power from the private information effects at the individual level. An empirical application using a matched employer–employee data set (MEEDS) from Zambia and a second using another one from Ghana showcase the applied potential of the approach.

Article
Publication date: 19 March 2024

Uma Mazyck Jayakumar

In the aftermath of the Supreme Court’s 2023 decision to effectively end race-conscious admissions practices across the nation, this paper highlights the law’s commitment to…

Abstract

Purpose

In the aftermath of the Supreme Court’s 2023 decision to effectively end race-conscious admissions practices across the nation, this paper highlights the law’s commitment to whiteness and antiblackness, invites us to mourn and to connect to possibility.

Design/methodology/approach

Drawing from the theoretical contributions of Cheryl Harris, Jarvis Givens and Chezare Warren, as well as the wisdom of Justice Ketanji Brown Jackson’s dissenting opinion, this paper utilizes CRT composite counterstory methodology to illuminate the antiblack reality of facially “race-neutral” admissions.

Findings

By manifesting the impossible situation that SFFA and the Supreme Court’s majority seek to normalize, the composite counterstory illuminates how Justice Jackson’s hypothetical enacts a fugitive pedagogy within a dominant legal system committed to whiteness as property; invites us to mourn, to connect to possibility and to remain committed to freedom as an intergenerational project that is inherently humanizing.

Originality/value

In a sobering moment where we face the end of race-conscious admissions, this paper uniquely grapples with the contradictions of affirmative action as minimally effective while also radically disruptive.

Details

Equality, Diversity and Inclusion: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-7149

Keywords

Article
Publication date: 9 January 2024

Chunfu Wu, Guorui Ye, Yonghong Zhao, Baowen Ye, Tao Wang, Liangmo Wang and Zeming Zhang

Auxetics metamaterials show high performance in their specific characteristics, while the absolute stiffness and strength are much weaker due to substantial porosity. This paper…

Abstract

Purpose

Auxetics metamaterials show high performance in their specific characteristics, while the absolute stiffness and strength are much weaker due to substantial porosity. This paper aims to propose a novel auxetic honeycomb structure manufactured using selective laser melting and study the enhanced mechanical performance when subjected to in-plane compression loading.

Design/methodology/approach

A novel composite structure was designed and fabricated on the basis of an arrowhead auxetic honeycomb and filled with polyurethane foam. The deformation mechanism and mechanical responses of the structure with different structural parameters were investigated experimentally and numerically. With the verified simulation models, the effects of parameters on compression strength and energy absorption characteristics were further discussed through parametric analysis.

Findings

A good agreement was achieved between the experimental and simulation results, showing an evidently enhanced compression strength and energy absorption capacity. The interaction between the auxetic honeycomb and foam reveals to exploit a reinforcement effect on the compression performance. The parametric analysis indicates that the composite with smaller included angel and higher foam density exhibits higher plateau stress and better specific energy absorption, while increasing strut thickness is undesirable for high energy absorption efficiency.

Originality/value

The results of this study served to demonstrate an enhanced mechanical performance for the foam filled auxetic honeycomb, which is expected to be exploited with applications in aerospace, automobile, civil engineering and protective devices. The findings of this study can provide numerical and experimental references for the design of structural parameters.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 233