Search results

1 – 10 of over 9000
Article
Publication date: 4 September 2019

Konstantinos Stamoulis, Stelios K. Georgantzinos and G.I. Giannopoulos

The present study deals with the numerical modeling of the low-velocity impact damage of laminated composites which have increasingly important applications in aerospace primary…

Abstract

Purpose

The present study deals with the numerical modeling of the low-velocity impact damage of laminated composites which have increasingly important applications in aerospace primary structures. Such damage, generated by various sources during ground handling, substantially reduces the mechanical residual performance and the safe-service life. The purpose of this paper is to present and validate a computationally efficient approach in order to explore the effect of critical parameters on the impact damage characteristics.

Design/methodology/approach

Numerical modeling is considered as one of the most efficient tool as compared to the expensive and time-consuming experimental testing. In this paper, a finite element model based on explicit dynamics formulations is adopted. Hashin criterion is applied to predict the intralaminar damage initiation and evolution. The numerical analysis is performed using the ABAQUS® programme.

Findings

The employed modeling approach is validated using corresponding numerical data found in the literature and the presented results show a reasonable correlation to the available literature data. It is demonstrated that the current model can be used to capture the force-time response as well as damage parameter maps showing the intralaminar damage evolution for different impact cases with respect to the physical boundary conditions and a range of impact energies.

Originality/value

Low-velocity impact damage of laminated composites is still not well understood due to the complexity and non-linearity of the damage zone. The presented model is used to predict the force-time response which is considered as one of the most important parameters influencing the structural integrity. Furthermore, it is used for capturing the damage shape evolution, exhibiting a high degree of capability as a damage assessment computational tool.

Details

International Journal of Structural Integrity, vol. 11 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 February 2022

Yile Zhang, Yadong Zhou and Youchao Sun

The purpose of this paper is to analyze the bird impact damage of fuselage composite stiffened structures by numerical method and to evaluate the damage and the bird impact…

Abstract

Purpose

The purpose of this paper is to analyze the bird impact damage of fuselage composite stiffened structures by numerical method and to evaluate the damage and the bird impact resistance of different structures.

Design/methodology/approach

The deformation and damage of composite stiffened plates during bird impact are numerically analyzed by the explicit finite element software LS-DYNA. A comparative study on the numerical calculation results was conducted by using SPH (Smoothed Particle Hydrodynamics)-FEM (Finite Element Method) modeling and simulation. First, the I-shaped, T-shaped, straight stiffened plates and unstiffened plate were designed. Second, the accuracy of the bird model was verified and further used to evaluate bird strikes on composite stiffened plate. Third, the results of damage modes as well as displacements of the stiffened plates were compared.

Findings

The stiffeners can increase the local stiffness of the composite panel, which can effectively inhibit the bird’s movement along the impact direction. Adding stiffeners can change the panel matrix tension damage from global distribution to local distribution mode; however, the impact damage distribution and the ability to inhibit damage propagation can differ for different stiffened panels. Especially, the I-stiffened panel exhibits a better anti-bird strike performance.

Originality/value

The analysis of geometric parameters of structural components by numerical methods can reduce the cost of the design phase and has been widely used in aircraft design. The present study evaluated the bird impact damage of composite stiffened plates with different structures, which provides a guideline for selecting the stiffened plate structure in the fuselage skin.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 November 2012

C. Colombo, F. Libonati and L. Vergani

Composite materials are increasingly used in the structural and mechanical fields, thanks to their high strength‐to‐weight ratios and the possibility of tailoring them to meet…

Abstract

Purpose

Composite materials are increasingly used in the structural and mechanical fields, thanks to their high strength‐to‐weight ratios and the possibility of tailoring them to meet specific requirements. This study is focused on the damage to a glass fiber reinforced composite under different loading conditions. The aim is to find, by coupling mechanical tests with thermal analyses, a damage parameter, able to define the damage initiation in the studied material.

Design/methodology/approach

The object of this work is a glass‐fiber reinforced plastic (GFRP) laminate. To study the damage of this material under different loading conditions, static, dynamic and fatigue tests were carried out. During these tests, the surface temperature of the specimens was monitored by means of an IR‐camera. In the dynamic tests, a D‐mode (dissipation mode) analysis was also performed allowing the dissipated energy to be determined.

Findings

In the literature, thermography is an experimental technique which has always been applied to the study of homogeneous materials. Results obtained from the proposed experimental tests on this GFRP composite show how this practice can be applied also to this kinds of materials, to identify their damage initiation. From these observations, the results can be used to definite a stress corresponding to the damage initiation, which can be related to the fatigue behavior, and useful in design stage with these materials.

Originality/value

This paper provides for a useful tool to understand and predict fatigue behavior of a GFRP composite, from thermographic observations. Applications of thermography to the study of composite materials is an innovative research field, and the presented results seems satisfactory and promising for further experimental investigations.

Details

International Journal of Structural Integrity, vol. 3 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 July 2014

Krzysztof Majerski, Barbara Surowska, Jarosław Bieniaś, Patryk Jakubczak and Monika Ostapiuk

The purpose of this paper is to present microstructural and fractographic analysis of damage in aluminum (2024T3)/carbon-fiber reinforced laminates (AlC) after static tensile…

Abstract

Purpose

The purpose of this paper is to present microstructural and fractographic analysis of damage in aluminum (2024T3)/carbon-fiber reinforced laminates (AlC) after static tensile test. The influence of fiber orientation on the failure was studied and discussed.

Design/methodology/approach

The subject of examination was AlC. The fiber–metal laminates (FMLs) were manufactured by stacking alternating layers of 2024-T3 aluminum alloy (0.3 mm per sheets) and carbon/epoxy composites made of unidirectional prepreg tape HexPly system (Hexcel, USA) in [0], [± 45] and [0/90]S configuration. The fractographic analysis was carried out after static tensile test on the damage area of the specimens. The mechanical tests have been performed in accordance to ASTM D3039. The microstructural and fractographic analysis of FMLs were studied using optical (Nikon SMZ1500, Japan) and scanning electron microscope (Zeiss Ultra Plus, Germany).

Findings

FMLs based on aluminum and carbon/epoxy composite are characterized by high tensile properties depending on their individual components and the orientation of the reinforcing fibers, failure of hybrid laminates indicates the complexity process of degradation of these materials. The nature of damage in FML layers is similar to that typical in polymer composites with interlaminar delaminations, transverse cracks of the composite layers, degradation of fiber/matrix interface, damage process in FMLs is also associated mainly with interface between metal and fiber reinforced composite. The mixed damage – cohesive and adhesive – was observed.

Originality/value

One of the most important aspect in the designing and manufacturing process in the service life of composite structures is damage mechanisms. The damage processes in composite materials, particularly in FMLs, are more complex in comparison to metal materials and fiber reinforced polymers.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 6 May 2020

Mayyadah S. Abed, Payman S. Ahmed, Jawad K. Oleiwi and Basim M. Fadhil

Composite laminates are considered one of the most popular damage-resistant materials when exposed to impact force in civil and military applications. In this study, a comparison…

347

Abstract

Purpose

Composite laminates are considered one of the most popular damage-resistant materials when exposed to impact force in civil and military applications. In this study, a comparison of composites 12 and 20 layers of fabrics Kevlar and ultrahigh-molecular-weight poly ethylene (UHMWPE)-reinforced epoxy under low-velocity impacts represented by drop-weight impact and Izod pendulum impact has been done. During the Izod test, Kevlar-based composite showed damage at the composite center and fiber breakages. Whereas delamination was observed for UHMWPE reinforced epoxy (PE). The maximum impact strength was for Kevlar-reinforced epoxy (KE) and increases with the number of laminates. Drop-weight impact test showed the highest absorbed energy for (KE) composites. The results revealed that different behavior during the impact test for composites belongs to the impact mechanism in each test.

Design/methodology/approach

Aramid 1414 Kevlar 49 and UHMWPE woven fabrics were purchased from Yixing Huaheng High-Performance Fiber Textile Co. Ltd, with specifications listed in Table 1. Epoxy resin (Sikafloor-156) is supplied from Sika AG. Sikafloor-156 is a two-part, low-viscosity, solvent-free epoxy resin, with compressive strength ∼95 N/mm², flexural strength ∼30 N/mm² and shore D hardness 83 (seven days). The mixture ratio of A/B was one-third volume ratio. Two types of laminated composites with different layers 12 and 20 were prepared by hand layup: Kevlar–epoxy and UHMWPE–epoxy composites as shown in Figure 1. Mechanical pressure was applied to remove bubbles and excess resin for 24 h. The composites were left in room temperature for seven days, and then composite plates were cut for the desired dimensions. Low-velocity impact testing, drop-weight impact, drop tower impact system INSTRON CEAST 9350 (see Figure 2) was facilitated to investigate impact resistance of composites according to ASTM D7137M (Test Method for Compressive, 2005). Low-velocity impact tests have been performed at room temperature for composite with dimensions 10 × 15 cm2 utilizing a drop tower (steel indenter diameter 19.85 mm as shown in Figure 3), height (800 mm), drop mass (5 kg) and speed (3.96 m/s). Special impact equipment consisting of vertically falling impactor was used in the test. The energy is obtained from Drop tower impact systems, (2009) E = ½ mv2 (2.1). The relationship between force–time, deformation–time and energy–time and deformation was obtained. Energy–deformation and force–deformation relationships were also obtained. The depth of penetration and the radius of impactor traces were recorded. Izod pendulum impact test of plastics was applied according to ASTM D256 (Test Method for Compressive, 2005). Absorbed energy was recorded to compute the impact strength of the specimen. The specimen before the test is shown in Figure 4.

Findings

In order to investigate two types of impact: drop-weight impact and Izod impact on damage resistance of composites, the two tests were done. Drop-weight impact is dropping a known weight and height in a vertical direction with free fall, absorbed energy can be calculated. Izod impact measures the energy required to break a specimen by striking a specific size bar with a pendulum (Test Method for Compressive, 2005; Test Methods for Determining, 2018). The results obtained with the impact test are presented. Figure 5 shows the histogram bars of impact strength of composites. It can be noticed that Kevlar–epoxy (KE) composites give higher energy strength than UHMWPE–epoxy (PE) in 12 and 20 plies. The increasing percentage is about 18.5 and 5.7%. It can be observed in Figure 6 that samples are not destructed completely due to fiber continuity. Also, the delamination occurs obviously for UHMWPE–epoxy more than for Kevlar-based composite, which may due to weak binding between UHMWPE with an epoxy relative with Kevlar.

Practical implications

The force–time curves for Kevlar–epoxy (KE) and UHMWPE–epoxy (PE) composites with 12 and 20 plies are illustrated respectively in Figure 7. The contact duration between indenter and composite surface is repented by the force–time curves, so the maximum force reaches with certain displacement. It can be seen that maximum force was (13,209, 18,734.9, 23,271.07 and 19,825.38 N) at the time (3.97, 4.43, 3.791 and 4.198 ms) for 12 KE, 12 PE, 20 KE and 20 PE, respectively. The sharp peaks of KE composite are due to the lower ductility of Kevlar compared with UHMWPE. These results agree with the results of Ahmed et al. (2016). Kevlar-based composites (KE) showed lower impact force and crack propagates in the matrix with fast fiber breakage compared with PE composites, whereas the latter did not suffer from fabric breakage in 12 and 20 plies any more (see Figure 8). Figure 9 illustrates force–deformation curves, for 12 and 20 plies of Kevlar–epoxy (KE) and UHMWPE–epoxy (PE) composites. Curve's slop is considered the specimen's stiffness and the maximum displacement. To investigate the impact behavior of the four different composites, the comparison was made among the relative force–deformation curves. The maximum displacement was 5.119, 3.443, 1.173 and 1.17 mm for 12KE, 12 PE, 20 KE and 20 PE, respectively. It seems that UHMWPE-based composite (PE) presents lower deformation than Kevlar-based composites (KE) at a same number of laminates, although the maximum displacement is for 12 PE and 12 KE (see Figure 8). Kevlar-based composites (KE) showed more damage than UHMWPE-based composite (PE), so the maximum displacement is always higher for KE specimens with maximum indenter trace diameter (D∼11.27 mm). The onset of cracks begins along fibers on the impacted side for 20 KE and 20 PE specimens with lower indenter trace (D∼5.42 and 5.96 mm), respectively (see Table 2). These results refer to the lower stiffness of KE composites (see the slope of the curve) relative to PE composites. This result agreed with (Vieille et al., 2013) when they found that the theoretical stiffness of laminated composite during drop-weight impact depends significantly on fiber nature (Fadhil, 2013). The matrix cracking is the first type of damage that may not change stiffness of composites overall. Material stiffness changes due to the stress concentration represented by matrix cracks, delamination and fiber breakage (Hancox, 2000). Briefly, the histogram (see Figure 10) showed that the best impact behavior was for 20 KE, highest impact force with lower deformation, indenter trace diameter and contact time. Absorbed energy–time and absorbed energy–deformation curves for composites are shown in Figures 11 and 12, respectively. The maximum absorbed energy was (36.313, 29.952, 9.783 and 6.928 J) for 12 KE, 12 PE, 20 KE and 20 PE, respectively. Test period time is only 8 ms, but the time in which composites reached maximum absorbed energy was (4.413, 3.636, 2.394 and 2.408 ms). The maximum absorbed energy was for 12 KE with lower rebound energy because part of kinetic energy transferred to potential energy kept in the composite as material damage (see Figures 3 and 4). This composite absorbs more energy as material damage which kept as potential energy. Whereas other composites 12 PE, 20 PE and 20 KE showed less damage, lower absorbed energy and higher rebound energy, which appeared in different peak behavior as the negative value of energy. Also from the absorbed energy–time curves, it had been noticed significantly the maximum contact time of indenter with composite was 4.413 ms for 12 KE, which exhibits higher deformation (5.119 mm), whereas other composites 12 PE, 20 KE and 20 PE showed less damage, contact time and deformation as (3.443, 1.173, 1.17 mm), respectively.

Originality/value

The main goal of the current study is to evaluate the performances of armor composite made off of Kevlar and UHMWPE fabrics reinforced epoxy thermosetting resin under the low-velocity impact. Several plates of composites were prepared by hand layup. Izod and drop-weight impact tests were facilitated to get an indication about the absorbed energy and strength of the armors.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 February 2016

Zhihong Du, Xinhua Ni, Xiequan Liu and Cheng Chen

According to the microstructural characteristics of composite ceramic, the strain field distribution regularity of triangular symmetrical composite eutectic is obtained from the…

Abstract

Purpose

According to the microstructural characteristics of composite ceramic, the strain field distribution regularity of triangular symmetrical composite eutectic is obtained from the stress field distribution regularity of three-phase element in composite ceramic. In allusion to the damage of composite eutectic, it is introduced as a variable in this paper with the aim to determine the strain field distribution regularity of triangular symmetrical composite eutectic with damage behavior.

Design/methodology/approach

On the basis of the relationship between strain field and fiber inclusions volume fraction, the strain field of composite eutectic is analyzed.

Findings

The strain field of composite ceramic is distinctly dependent on the fiber inclusions volume fraction, fiber diameter and damage behavior of composite eutectic by quantitative analysis. The strain in matrix parallel to eutectic is the maximum linear strain and the main factor for the damage and fracture of eutectics.

Originality/value

The foundation of the strength research of composite eutectic is laid.

Details

World Journal of Engineering, vol. 13 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 June 2017

Fabienne Touchard, Michel Boustie, Laurence Chocinski-Arnault, Pedro Pascual González, Laurent Berthe, Davi de Vasconcellos, Luigi Sorrentino, Pawel Malinowski and Wieslaw Ostachowicz

The purpose of this paper is to study the damage induced in “green” and synthetic composites under impact loading.

Abstract

Purpose

The purpose of this paper is to study the damage induced in “green” and synthetic composites under impact loading.

Design/methodology/approach

The study was focussed on epoxy-based composites reinforced with woven hemp or glass fibres. Six assessment techniques were employed in order to analyse and compare impact damages: eye observation, back face relief, terahertz spectroscopy, laser vibrometry, x-ray micro-tomography and microscopic observations.

Findings

Different damage detection thresholds for each material and technique were obtained. Damage induced by mechanical and laser impacts showed relevant differences, but the damage mechanisms are similar in both types of impact: matrix cracks, fibre failure, debonding at the fibres/matrix interface and delamination. Damage shape on back surfaces is similar after mechanical or laser impacts, but differences were detected inside samples.

Originality/value

The combination of these six diagnoses provides complementary information on the damage induced by mechanical or laser impacts in the studied green and synthetic composites.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 May 2015

Babruvahan Pandurang Ronge and Prashant Maruti Pawar

– This paper aims to focus on the stochastic analysis of composite rotor blades with matrix cracking in forward flight condition.

Abstract

Purpose

This paper aims to focus on the stochastic analysis of composite rotor blades with matrix cracking in forward flight condition.

Design/methodology/approach

The effect of matrix cracking and uncertainties are introduced to the aeroelastic analysis through the cross-sectional stiffness properties obtained using thin-walled beam formulation, which is based on a mixed force and a displacement method. Forward flight analysis is carried out using an aeroelastic analysis methodology developed for composite rotor blades based on the finite element method in space and time. The effects of matrix cracking are introduced through the changes in the extension, extension-bending and bending matrices of composites, whereas the effect of uncertainties are introduced through the stochastic properties obtained from previous experimental and analytical studies.

Findings

The stochastic behavior of helicopter hub loads, blade root forces and blade tip responses are obtained for different crack densities. Further, assuming the behavior of progressive damage in same beam is measurable as compared to its undamaged state, the stochastic behaviors of delta values of various measurements are studied. From the stochastic analysis of forward flight behavior of composite rotor blades at various matrix cracking levels, it is observed that the histograms of these behaviors get mixed due to uncertainties. This analysis brings out the parameters which can be used for effective prediction of matrix cracking level under various uncertainties.

Practical implications

The behavior is useful for the development of a realistic online matrix crack prediction system.

Originality/value

Instead of introducing the white noise in the simulated data for testing the robustness of damage prediction algorithm, a systematic approach is developed to model uncertainties along with damage in forward flight simulation.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 October 2005

D. Roy Mahapatra, S. Suresh, S.N. Omkar and S. Gopalakrishnan

To develop a new method for estimation of damage configuration in composite laminate structure using acoustic wave propagation signal and a reduction‐prediction neural network to…

Abstract

Purpose

To develop a new method for estimation of damage configuration in composite laminate structure using acoustic wave propagation signal and a reduction‐prediction neural network to deal with high dimensional spectral data.

Design/methodology/approach

A reduction‐prediction network, which is a combination of an independent component analysis (ICA) and a multi‐layer perceptron (MLP) neural network, is proposed to quantify the damage state related to transverse matrix cracking in composite laminates using acoustic wave propagation model. Given the Fourier spectral response of the damaged structure under frequency band‐selective excitation, the problem is posed as a parameter estimation problem. The parameters are the stiffness degradation factors, location and approximate size of the stiffness‐degraded zone. A micro‐mechanics model based on damage evolution criteria is incorporated in a spectral finite element model (SFEM) for beam type structure to study the effect of transverse matrix crack density on the acoustic wave response. Spectral data generated by using this model is used in training and testing the network. The ICA network called as the reduction network, reduces the dimensionality of the broad‐band spectral data for training and testing and sends its output as input to the MLP network. The MLP network, in turn, predicts the damage parameters.

Findings

Numerical demonstration shows that the developed network can efficiently handle high dimensional spectral data and estimate the damage state, damage location and size accurately.

Research limitations/implications

Only numerical validation based on a damage model is reported in absence of experimental data. Uncertainties during actual online health monitoring may produce errors in the network output. Fault‐tolerance issues are not attempted. The method needs to be tested using measured spectral data using multiple sensors and wide variety of damages.

Practical implications

The developed network and estimation methodology can be employed in practical structural monitoring system, such as for monitoring critical composite structure components in aircrafts, spacecrafts and marine vehicles.

Originality/value

A new method is reported in the paper, which employs the previous works of the authors on SFEM and neural network. The paper addresses the important problem of high data dimensionality, which is of significant importance from practical engineering application viewpoint.

Details

Engineering Computations, vol. 22 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2014

Patryk Jakubczak, Jaroslaw Bieniaś, Krzysztof Majerski, Monika Ostapiuk and Barbara Surowska

The purpose of this study was to carry out the analysis of impact resistance for aluminum hybrid laminates and polymer matrix composites reinforced with glass and carbon fibers…

Abstract

Purpose

The purpose of this study was to carry out the analysis of impact resistance for aluminum hybrid laminates and polymer matrix composites reinforced with glass and carbon fibers. Damage modes and damages process under varied impact energies are also presented and discussed.

Design/methodology/approach

The subject of examination were fiber metal laminates – FMLs (Al/CFRP and Al/GFRP). The samples were subjected to low-velocity impact by using a drop-weight impact tester. The specimens after impact were examined using non-destructive and destructive inspection techniques.

Findings

The hybrid laminates are characterized by higher resistance to impact in comparison to the conventional laminates. The delaminations between composite layers as well as the delaminations on metal/composite interface and lateral cracks are the prevailing type of destruction mechanisms. No significant relationships between metal volume friction coefficient vs response to the impact were recorded for the hybrid laminates under tests.

Practical implications

The understanding of impact behavior of FMLs is particularly important for selecting these materials and their designing, in damage tolerance philosophy aspect in aerospace industry as well as in searching the methods of predicting of FML hybrid materials resistance to impact. The test results might be useful for the validation of simulations using numerical methods.

Originality/value

The paper presents the impact resistance of new hybrid laminates for aerospace applications. The identification of damage character and failure mechanisms as well as the relationships between damage and impact responses of aluminum/carbon and aluminum/glass hybrid laminates were estimated.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of over 9000