Search results

1 – 10 of over 7000
Article
Publication date: 5 October 2021

Indunil Erandi Ariyaratne, Anthony Ariyanayagam and Mahen Mahendran

This paper presents the details of a research study on developing composite masonry blocks using two types of mixes, conventional and lightweight mix, to enhance their…

Abstract

Purpose

This paper presents the details of a research study on developing composite masonry blocks using two types of mixes, conventional and lightweight mix, to enhance their fire/bushfire resistance and residual compressive strength.

Design/methodology/approach

Composite masonry blocks (390 × 190 × 90 mm) were fabricated using conventional cement–sand mix as the outer layer and lightweight cement–sand–diatomite mix as the inner layer. Material properties were determined, and all the mixes were proportioned by the absolute volume method. After 28 days of curing, density tests, compression tests before and after fire exposure and fire resistance tests of the developed blocks were conducted, and the results were compared with those of conventional cement–sand and cement–sand–diatomite blocks.

Findings

Developed composite blocks satisfy density and compressive strength requirements for loadbearing lightweight solid masonry units. Fire resistance of the composite block is –/120/120, and no cracks appeared on the ambient side surface of the block after 3 h of fire exposure. Residual strength of the composite block is higher compared to cement–sand and cement–sand–diatomite blocks and satisfies the loadbearing solid masonry unit strength requirements.

Practical implications

Composite block developed in this research can be suggested as a suitable loadbearing lightweight solid masonry block for several applications in buildings in bushfire prone areas.

Originality/value

Limited studies are available for composite masonry blocks in relation to their fire resistance and residual strength.

Details

Journal of Structural Fire Engineering, vol. 13 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 31 January 2020

Petra Kumi, Stephanie A. Martin, Vadim V. Yakovlev, Martin S. Hilario, Brad W. Hoff and Ian M. Rittersdorf

The paper introduces and illustrates the use of numerical models for the simulation of electromagnetic and thermal processes in an absorbing ceramic layer (susceptor) of a new…

111

Abstract

Purpose

The paper introduces and illustrates the use of numerical models for the simulation of electromagnetic and thermal processes in an absorbing ceramic layer (susceptor) of a new millimeter-wave (MMW) heat exchanger. The purpose of this study is to better understand interaction between the MMW field and the susceptor, choose the composition of the ceramic material and help design the physical prototype of the device.

Design/methodology/approach

A simplified version of the heat exchanger comprises a rectangular block of an aluminum nitride (AlN) doped with molybdenum (Mo) that is backed by a thin metal plate and irradiated by a plane MMW. The coupled electromagnetic-thermal problem is solved by the finite-difference time-domain (FDTD) technique implemented in QuickWave. The FDTD model is verified by solving the related electromagnetic problem by the finite element simulator COMSOL Multiphysics. The computation of dissipated power and temperature is based on experimental data on temperature-dependent dielectric constant, loss factor, specific heat and thermal conductivity of the AlN:Mo composite. The non-uniformity of patterns of dissipated power and temperature is quantified via standard-deviation-based metrics.

Findings

It is shown that with the power density of the plane wave on the block’s front face of 1.0 W/mm2, at 95 GHz, 10 × 10 × 10-mm blocks with Mo = 0.25 – 4% can be heated up to 1,000 °C for 60-100 s depending on Mo content. The uniformity of the temperature field is exceptionally high – in the course of the heating, temperature is evenly distributed through the entire volume and, in particular, on the back surface of the block. The composite producing the highest level of total dissipated power is found to have Mo concentration of approximately 3%.

Research limitations/implications

In the electromagnetic model, the heating of the AlN:Mo samples is characterized by the volumetric patterns of density of dissipated power for the dielectric constant and the loss factor corresponding to different temperatures of the process. The coupled model is run as an iterative procedure in which electromagnetic and thermal material parameters are upgraded in every cell after each heating time step; the process is then represented by a series of thermal patterns showing time evolution of the temperature field.

Practical implications

Determination of practical dimensions of the MMW heat exchanger and identification of material composition of the susceptor that make operations of the device energy efficient in the required temperature regime require and expensive experimentation. Measurement of heat distribution on the ceramic-metal interface is a practically challenging task. The reported model is meant to be a tool assisting in development of the concept and supporting system design of the new MMW heat exchanger.

Originality/value

While exploitation of a finite element model (e.g. in COMSOL Multiphysics environment) of the scenario in question would require excessive computational resources, the reported FDTD model shows operational capabilities of solving the coupled problem in the temperature range from 20°C to 1,000°C within a few hours on a Windows 10 workstation. The model is open for further development to serve in the ongoing support of the system design aiming to ease the related experimental studies.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 September 2023

Shahe Liang, Wenkun Liu and Zhongfan Chen

Recycled concrete is an economical and environmentally friendly green material. The shear performance of recycled concrete load-bearing masonry is studied, which is great of…

Abstract

Purpose

Recycled concrete is an economical and environmentally friendly green material. The shear performance of recycled concrete load-bearing masonry is studied, which is great of significance for its promotion and application and also has great significance for the sustainable development of energy materials.

Design/methodology/approach

In total, 30 new load-bearing block masonry samples of self-insulating recycled concrete are subjected to pure shear tests, and 42 samples are tested subjected to shear-compression composite shear tests. According to the axial design compression ratio, the test is separated into seven working conditions (0.1–0.8).

Findings

According to the test results, the recommended formula for the average shear strength along the joint section of recycled concrete block masonry is given, which can be used as a reference for engineering design. The measured shear-compression correlation curves of recycled concrete block masonry are drawn, and the proposed limits of three shear-compression failure characteristics are given. The recommended formula for the average shear strength of masonry under the theory of shear-friction with variable friction coefficient is given, providing a valuable reference for the formulation of relevant specifications and practical engineering design.

Originality/value

Simulated elastoplastic analysis and finite element modeling on the specimens are performed to verify the test results.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 June 2020

Fengxiang Cao, Fengyuan Yan and Jianzhang Wang

This paper aims to study the tribological properties of high strength glass fabric/phenolic laminate composites reinforced by carbon fiber (CF) with and without graphene oxide…

Abstract

Purpose

This paper aims to study the tribological properties of high strength glass fabric/phenolic laminate composites reinforced by carbon fiber (CF) with and without graphene oxide (GO) modified.

Design/methodology/approach

In this study, the tribological performance tests of the composites were conducted on a block-on-ring tester (MRH-03). The applied load, linear velocity and duration of time are 200 N, 0.5 m/s and 120 min, respectively. The friction coefficient and specific wear rate were shown.

Findings

The optimal content of GO on CFs is 0.2 per cent mass fraction. The optimal content of GO addition means the strongest interfacial adhesion between the CF and the matrix.

Originality/value

The main originality of this paper is to reveal the effect of surface GO on CF on the tribological properties of fabric-reinforced composites.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2019-0273/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 January 2009

Pedro Gonçalves Martinho, Paulo Jorge Bártolo and António Sérgio Pouzada

This paper aims to explore the influence of the materials used in moulding blocks of hybrid moulds on the injection moulding setup and the properties of the mouldings.

1146

Abstract

Purpose

This paper aims to explore the influence of the materials used in moulding blocks of hybrid moulds on the injection moulding setup and the properties of the mouldings.

Design/methodology/approach

An instrumented (pressure and temperature) hybrid mould with exchangeable moulding blocks, produced by rapid prototyping and tooling techniques (RPT), was used to produce polypropylene tubular mouldings. The configuration of the mould was varied with combinations of moulding block materials, namely, an epoxy resin composite processed by vacuum casting and steel. The processing conditions were adjusted to obtained steady processing conditions. The mouldings were assessed in terms of the microstructure and the shrinkage.

Findings

Due to the properties of the moulding block obtained by RPT being different from tool steel, the injection moulding processing conditions and the plastics parts properties are different when hybrid moulds are used. The cycle time depends on the moulding block properties and must be adjusted to the desired running temperature. The morphology of the mouldings is strongly affected by the thermal properties of the moulding block materials. When different materials are used in the core and the cavity asymmetric structures develop in the part. The shrinkage of the mouldings, when resin cores are used is also affected by the deformation of the core caused by the injection pressure.

Originality/value

This paper makes a contribution to understanding the morphology of semi‐crystalline mouldings obtained using hybrid moulds and enhances the importance of the core deformation on the shrinkage of the mouldings.

Details

Rapid Prototyping Journal, vol. 15 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2018

Yung Sin Chong, Keat Hoe Yeoh, Pei Ling Leow and Pei Song Chee

This paper aims to report a stretchable piezoresistive strain sensor array that can detect various static and dynamic stimuli, including bending, normal force, shear stress and…

Abstract

Purpose

This paper aims to report a stretchable piezoresistive strain sensor array that can detect various static and dynamic stimuli, including bending, normal force, shear stress and certain range of temperature variation, through sandwiching an array of conductive blocks, made of multiwalled carbon nanotubes (MWCNTs) and polydimethylsiloxane (PDMS) composite. The strain sensor array induces localized resistance changes at different external mechanical forces, which can be potentially implemented as electronic skin.

Design/methodology/approach

The working principle is the piezoresistivity of the strain sensor array is based on the tunnelling resistance connection between the fillers and reformation of the percolating path when the PDMS and MWCNT composite deforms. When an external compression stimulus is exerted, the MWCNT inter-filler distance at the conductive block array reduces, resulting in the reduction of the resistance. The resistance between the conductive blocks in the array, on the other hand, increases when the strain sensor is exposed to an external stretching force. The methodology was as follows: Numerical simulation has been performed to study the pressure distribution across the sensor. This method applies two thin layers of conductive elastomer composite across a 2 × 3 conductive block array, where the former is to detect the stretchable force, whereas the latter is to detect the compression force. The fabrication of the strain sensor consists of two main stages: fabricating the conducting block array (detect compression force) and depositing two thin conductive layers (detect stretchable force).

Findings

Characterizations have been performed at the sensor pressure response: static and dynamic configuration, strain sensing and temperature sensing. Both pressure and strain sensing are studied in terms of the temporal response. The temporal response shows rapid resistance changes and returns to its original value after the external load is removed. The electrical conductivity of the prototype correlates to the temperature by showing negative temperature coefficient material behaviour with the sensitivity of −0.105 MΩ/°C.

Research limitations/implications

The conductive sensor array can potentially be implemented as electronic skin due to its reaction with mechanical stimuli: compression and stretchable pressure force, strain sensing and temperature sensing.

Originality/value

This prototype enables various static and dynamic stimulus detections, including bending, normal force, shear stress and certain range of temperature variation, through sandwiching an array of conductive blocks, made of MWCNT and PDMS composite. Conventional design might need to integrate different microfeatures to perform the similar task, especially for dynamic force sensing.

Details

Sensor Review, vol. 38 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 November 2017

Blaza Stojanovic, Jasmina Blagojevic, Miroslav Babic, Sandra Velickovic and Slavica Miladinovic

This research aims to describe the influence of weight per cent of graphite (Gr), applied load and sliding speed on the wear behavior of aluminum (Al) alloy A356 reinforced with…

Abstract

Purpose

This research aims to describe the influence of weight per cent of graphite (Gr), applied load and sliding speed on the wear behavior of aluminum (Al) alloy A356 reinforced with silicon carbide (SiC) (10 Wt.%) and Gr (1 Wt.% and 5 Wt.%) particles. The objective is to analyze the effect of the aforementioned parameters on a specific wear rate.

Design/methodology/approach

These hybrid composites are obtained by means of the compo-casting process. Tribological analyses were conducted on block-on-disc tribometer at three different loads (10, 20 and 30 N) and three different sliding speeds (0.25, 0.5 and 1 m/s), at the sliding distance of 900 m, in dry sliding wear conditions. Optimization of the tribological behavior was conducted via the Taguchi method, and ANOVA was used for the analysis of the specific wear rate. Confirmation tests are used to foresee and check the experimental results. Examined samples were analyzed via a scanning electron microscope (SEM). Regression models for predicting specific wear rate were developed with Taguchi and ANN (artificial neural network) methods.

Findings

The biggest impact on value of specific wear rate has the load (43.006%), while the impact of Wt.% Gr (31.514%) was less. After comparison of the results, i.e. regression models, for predicting the specific wear rate, it was observed that ANN was more efficient than the Taguchi method. The specific wear rate of Al alloy A356 with SiC (10 Wt.%) and Gr (1 Wt.% and 5 Wt.%) decreases with a decrease in the load and weight per cent of Gr-reinforcing material, as well as with a decrease in sliding speed.

Originality/value

The results obtained in this paper using the Taguchi method and the ANN method are useful for improving and further investigating the wear behavior of the SiC- and Gr-reinforced Al alloy A356.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 January 2018

Marlon Wesley Machado Cunico and Jonas de Carvalho

During the past years, numerous market segments have increasingly adopted additive manufacturing technologies for product development and complex parts design. Consequently…

Abstract

Purpose

During the past years, numerous market segments have increasingly adopted additive manufacturing technologies for product development and complex parts design. Consequently, recent developments have expanded the technologies, materials and applications in support of emerging needs, in addition to improving current processes. The present work aims to propose and characterise a new technology that is based on selective formation of metal-polymer composites with low power source.

Design/methodology/approach

To develop this project, the authors have divided this work in three parts: material development, process feasibility and process optimisation. For the polymeric material development, investigation of metallic and composite materials assessed each material’s suitability for selective composite formation besides residual material removal. The primary focus was the evaluation of proposed process feasibility. The authors applied multivariable methods, where the main responses were line width, penetration depth, residual material removal feasibility, layer adherence strength, mechanical strength and dimensional deviation of resultant object. The laser trace speed, distance between formation lines and laser diameter were the main variables. Removal agent and polymeric material formulation were constants. In the last part of this work, the authors applied a multi-objective optimisation. The optimisation objectives minimized processing time and dimensional deviation while maximizing mechanical strength in xy direction and mechanical strength in z direction.

Findings

With respect to material development, the polymeric material tensile strength was found between 30 and 45 MPa at break. It was also seen that this material has low viscosity before polymerized (between 2 and 20 cP) essential for composite formation and complete material removal. In that way, the authors also identified that the residual material removal process was possible by redox reaction. In contrast with that the final object was marked by the polymer which covers the metallic matrix, protecting the object protects against chemical reactions. For the feasibility study, the authors identified the process windows for adherence between composite layers, demonstrating the process feasibility. The composite mechanical strength was shown to be between 120 and 135 MPa in xy direction and between 35 and 45 MPa in z direction. In addition, the authors have also evidenced that the geometrical dimensional distortion might vary until 5 mm, depending on process configuration. Despite that, the authors identified an optimised configuration that exposes the potential application of this new technology. As this work is still in a preliminary development stage, further studies are needed to be done to better understand the process and market segments wherein it might be applied.

Originality/value

This paper proposed a new and innovative additive manufacturing technology which is based on metal-polymer composites using low power source. Additionally, this work also described studies related to the investigation of concept feasibility and proposed process characterisation. The authors have focused on material development and studied the functional feasibility, which at the same time might be useful to the development of other additive manufacturing processes.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 April 2012

Wang Shi‐bo

The purpose of this paper is to improve the tribological properties of Polyamide 1010 (PA 1010) in rolling friction with traction.

Abstract

Purpose

The purpose of this paper is to improve the tribological properties of Polyamide 1010 (PA 1010) in rolling friction with traction.

Design/methodology/approach

PA1010 composites filled with zinc oxide whiskers (ZnOw) were prepared by hot compression molding. The compressive properties of the composites were measured with an electronic material tester and the tribological behavior in rolling friction with traction of nylon composites was studied with a two‐roller contact rolling tester.

Findings

The results indicate that the compression modulus of composites increases with the rising content of ZnOw. Both the ultimate compression strength and the compression yield strength of composites increase to the maximum value when the content of ZnOw is 15 wt%. Both the traction coefficient and the slip ratio of each composite were influenced by the traction load and the normal load. In addition, the ZnOw proportion affected the slip ratio of the composites. The experimental results demonstrate that composites including 10 wt% and 15 wt% ZnOw exhibit lighter wear and lower slip ratio. The wear rate of the nylon composites is increased as the normal load increases due to the rising acting pressure against the nylon composites. The rising traction load also causes inflation in the wear rate of the composites.

Research limitations/implications

The tests in the paper were carried out according to the conditions of tramcars in mining.

Practical implications

PA 1010 composites filled with ZnOw presented the preferable mechanical and tribological properties of PA1010, which can be used in the driving wheel of tramcars in mining and other components requiring high traction coefficient.

Originality/value

The paper studied the tribological properties of PA 1010 composites including ZnOw with special dimensional structure.

Details

Industrial Lubrication and Tribology, vol. 64 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 October 2017

Raviraj M.S., Sharanaprabhu C.M. and Mohankumar G.C.

The purpose of this paper is to present the determination of critical stress intensity factor (KC) both by experimental method and three-dimensional (3D) finite element…

Abstract

Purpose

The purpose of this paper is to present the determination of critical stress intensity factor (KC) both by experimental method and three-dimensional (3D) finite element simulations.

Design/methodology/approach

CT specimens of different compositions of Al6061-TiC composites (3wt%, 5wt% and 7wt% TiC) with variable crack length to width (a/W=0.3-0.6) ratios are machined from as-cast composite block. After fatigue pre-cracking the specimens to a required crack length, experimental load vs crack mouth opening displacement data are plotted to calculate the KC value. Elastic 3D finite element simulations have been conducted for CT specimens of various compositions and a/W ratios to compute KC. The experimental results indicate that the magnitude of KC depends on a/W ratios, and significantly decreases with increase in a/W ratios of the specimen.

Findings

From 3D finite element simulation, the KC results at the centre of CT specimens for various Al6061-TiC composites and a/W ratios show satisfactory agreement with experimental results compared to the surface.

Originality/value

The research work contained in this manuscript was conducted during 2015-2016. It is original work except where due reference is made. The authors confirm that the research in their work is original, and that all the data given in the article are real and authentic. If necessary, the paper can be recalled, and errors corrected.

Details

International Journal of Structural Integrity, vol. 8 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 7000