Search results

1 – 10 of over 5000
Article
Publication date: 18 April 2024

Jibran Abbas and Ashish Khare

According to regulations, aircraft must be in an airworthy condition before they can be operated. To ensure airworthiness, they must be maintained by an approved component…

Abstract

Purpose

According to regulations, aircraft must be in an airworthy condition before they can be operated. To ensure airworthiness, they must be maintained by an approved component maintenance organisation. This study is aimed to identify potential errors that may arise during the final inspection and certification process of aircraft components, categorise them, determine their consequences and quantify the associated risks. Any removed aircraft components must be sent to an approved aircraft component maintenance organisation for further maintenance and issuance of European Union Aviation Safety Agency (EASA) Form 1. Thereafter, a final inspection and certification process must be conducted by certifying staff to receive an EASA Form 1. This process is crucial because any errors during this stage can result in the installation of unsafe components in an aircraft.

Design/methodology/approach

The Systematic Human Error Reduction and Prediction Approach (SHERPA) method was used to identify potential errors. This method involved a review of the procedures of three maintenance organisations, individual interviews with ten subject matter experts and a consensus group of 14 certifying staff from different maintenance organisations to achieve the desired results.

Findings

In this study, 39 potential errors were identified during the final inspection and certification process. Furthermore, analysis revealed that 48.7% of these issues were attributed to checking errors, making it the most common type of error observed.

Originality/value

This study pinpoints the potential errors in the final inspection and certification of aircraft components. It offers maintenance organisations a roadmap to assess procedures, implement preventive measures and reduce the likelihood of these errors.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 March 2024

Keyu Chen, Beiyu You, Yanbo Zhang and Zhengyi Chen

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction…

Abstract

Purpose

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction efficiency compared with conventional approaches. During the construction of prefabricated buildings, the overall efficiency largely depends on the lifting sequence and path of each prefabricated component. To improve the efficiency and safety of the lifting process, this study proposes a framework for automatically optimizing the lifting path of prefabricated building components using building information modeling (BIM), improved 3D-A* and a physic-informed genetic algorithm (GA).

Design/methodology/approach

Firstly, the industry foundation class (IFC) schema for prefabricated buildings is established to enrich the semantic information of BIM. After extracting corresponding component attributes from BIM, the models of typical prefabricated components and their slings are simplified. Further, the slings and elements’ rotations are considered to build a safety bounding box. Secondly, an efficient 3D-A* is proposed for element path planning by integrating both safety factors and variable step size. Finally, an efficient GA is designed to obtain the optimal lifting sequence that satisfies physical constraints.

Findings

The proposed optimization framework is validated in a physics engine with a pilot project, which enables better understanding. The results show that the framework can intuitively and automatically generate the optimal lifting path for each type of prefabricated building component. Compared with traditional algorithms, the improved path planning algorithm significantly reduces the number of nodes computed by 91.48%, resulting in a notable decrease in search time by 75.68%.

Originality/value

In this study, a prefabricated component path planning framework based on the improved A* algorithm and GA is proposed for the first time. In addition, this study proposes a safety-bounding box that considers the effects of torsion and slinging of components during lifting. The semantic information of IFC for component lifting is enriched by taking into account lifting data such as binding positions, lifting methods, lifting angles and lifting offsets.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 15 March 2024

Nan Feng, Lei Zhang, Xin Liu and Jing Xie

With the development of digitalization and interconnection, there is a growing need for enterprise customers to ensure the compatibility of the third-party components they are…

Abstract

Purpose

With the development of digitalization and interconnection, there is a growing need for enterprise customers to ensure the compatibility of the third-party components they are using in the manufacturing process, thus raising the integration requirements for the Industrial Internet platform and its third-party developers. Therefore, our study investigates the optimal integration decision of the Industrial Internet platform while considering its access price, the integration cost, and the net utility derived by enterprise customers from the third-party components.

Design/methodology/approach

We model a two-sided Industrial Internet platform that connects customers on the demand side to the developers on the supply side. We then explore the integration decision of the Industrial Internet platform and its important factors by solving the optimal profit function.

Findings

First, despite the high integration cost of third-party developers, the platform still chooses to integrate when enterprise customers derive high utility from the third-party components. Second, due to the compatibility effect, charging the enterprise customers a higher price may reduce the platform profits when these customers derive low utility from the third-party components. Third, the platform profits will increase along with the integration cost of third-party developers when it is low in the case where enterprise customers derive low utility from third-party components.

Originality/value

Our findings offer insightful takeaways for the Industrial Internet platform when making integration decisions.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 13 February 2024

Wenqi Mao, Kexin Ran, Ting-Kwei Wang, Anyuan Yu, Hongyue Lv and Jieh-Haur Chen

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for…

Abstract

Purpose

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for transportation cost optimization. Traditional irregular component loading methods are based on past performance, which frequently wastes vehicle space. Additionally, real-time road conditions, precast component assembly times, and delivery vehicle waiting times due to equipment constraints at the construction site affect transportation time and overall transportation costs. Therefore, this paper aims to provide an optimization model for Just-In-Time (JIT) delivery of precast components considering 3D loading constraints, real-time road conditions and assembly time.

Design/methodology/approach

In order to propose a JIT (just-in-time) delivery optimization model, the effects of the sizes of irregular precast components, the assembly time, and the loading methods are considered in the 3D loading constraint model. In addition, for JIT delivery, incorporating real-time road conditions in the transportation process is essential to mitigate delays in the delivery of precast components. The 3D precast component loading problem is solved by using a hybrid genetic algorithm which mixes the genetic algorithm and the simulated annealing algorithm.

Findings

A real case study was used to validate the JIT delivery optimization model. The results indicated this study contributes to the optimization of strategies for loading irregular precast components and the reduction of transportation costs by 5.38%.

Originality/value

This study establishes a JIT delivery optimization model with the aim of reducing transportation costs by considering 3D loading constraints, real-time road conditions and assembly time. The irregular precast component is simplified into 3D bounding box and loaded with three-space division heuristic packing algorithm. In addition, the hybrid algorithm mixing the genetic algorithm and the simulated annealing algorithm is to solve the 3D container loading problem, which provides both global search capability and the ability to perform local searching. The JIT delivery optimization model can provide decision-makers with a more comprehensive and economical strategy for loading and transporting irregular precast components.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 21 February 2024

Hina Munir, Shazia Nauman, Farough Ali Shah and Umair Zahid

Drawing on social cognitive career theory (SCCT), this study aims to examine how university students’ attitude towards entrepreneurship education (ATEE) consists of affective…

Abstract

Purpose

Drawing on social cognitive career theory (SCCT), this study aims to examine how university students’ attitude towards entrepreneurship education (ATEE) consists of affective, cognitive and behavioral components influences their entrepreneurial intentions. It further examines the role of entrepreneurial self-efficacy (ESE) as a mediator and social norms as a moderator in the ATEE – entrepreneurial intentions and – ESE relationships, respectively.

Design/methodology/approach

A sample of 428 university students from the new generational cohort entering workforce now (i.e. generation Z) from the four main cities of the province of Punjab, Pakistan, were considered using an online administered questionnaire. The study analyzes data using SPSS v25 and AMOS v22 and presents descriptive statistics, reliability, validity analysis and linear regression analysis. Furthermore, to test mediation and moderation hypotheses, Hayes’ PROCESS macro v3.0 was used.

Findings

The results confirm that individuals’ ATEE based on affective, cognitive and behavioral components have significant influence on entrepreneurial intentions. The findings also confirm the strong mediating role of ESE between the components of ATEE and entrepreneurial intentions. Furthermore, the conditional effects results confirm that social norms strengthened the positive relationships between the affective, behavioral and cognitive components of ATEE – ESE at three levels (low, medium and high).

Originality/value

This study is the first of its nature to unlock the missing link between ATEE’s components and entrepreneurial intentions using the theoretical foundations of SCCT. Furthermore, this study provides theoretical and practical implications specifically considering a developing country – Pakistan.

Details

Journal of Entrepreneurship and Public Policy, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2045-2101

Keywords

Article
Publication date: 6 February 2024

Chi Zhang, Kun He, Wenjie Zhang, Ting Jin and Yibin Ao

To further promote application of BIM technology in construction of prefabricated buildings, influencing factors and evolution laws of willingness to apply BIM technology are…

Abstract

Purpose

To further promote application of BIM technology in construction of prefabricated buildings, influencing factors and evolution laws of willingness to apply BIM technology are explored from the perspective of willingness of participants.

Design/methodology/approach

In this paper, a tripartite game model involving the design firm, component manufacturer and construction firm is constructed and a system dynamics method is used to explore the influencing factors and game evolution path of three parties' application of BIM technology, from three perspectives, cost, benefit and risk.

Findings

The government should formulate measures for promoting the application of BIM according to different BIM application willingness of the parties. When pursuing deeper BIM application, the design firm should pay attention to reducing the speculative benefits of the component manufacturer and the construction firm. The design firm and the component manufacturer should pay attention to balancing the cost and benefit of the design firm while enhancing collaborative efforts. When the component manufacturer and the construction firm cooperate closely, it is necessary to pay attention to balanced distribution of interests of both parties and lower the risk of BIM application.

Originality/value

This study fills a research gap by comprehensively investigating the influencing factors and game evolution paths of willingness of the three parties to apply BIM technology to prefabricated buildings. The research helps to effectively improve the building quality and construction efficiency, and is expected to contribute to the sustainability of built environment in the context of circular economy in China.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 December 2023

Noah Ray and Il Yong Kim

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the…

Abstract

Purpose

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the manufacturing process can be leveraged in design optimization. The purpose of the study is to propose a novel method that improves structural performance by optimizing 3D print orientation of FRAM components.

Design/methodology/approach

This work proposes a two-part design optimization method that optimizes 3D global print orientation and topology of a component to improve a structural objective function. The method considers two classes of design variables: (1) print orientation design variables and (2) density-based topology design variables. Print orientation design variables determine a unique 3D print orientation to influence anisotropic material properties. Topology optimization determines an optimal distribution of material within the optimized print orientation.

Findings

Two academic examples are used to demonstrate basic behavior of the method in tension and shear. Print orientation and sequential topology optimization improve structural compliance by 90% and 58%, respectively. An industry-level example, an aerospace component, is optimized. The proposed method is used to achieve an 11% and 15% reduction of structural compliance compared to alternative FRAM designs. In addition, compliance is reduced by 43% compared to an equal-mass aluminum design.

Originality/value

Current research surrounding FRAM focuses on the manufacturing process and neglects opportunities to leverage design freedom provided by FRAM. Previous FRAM optimization methods only optimize fiber orientation within a 2D plane and do not establish an optimized 3D print orientation, neglecting exploration of the entire orientation design space.

Article
Publication date: 17 November 2023

Rituraj Raut, Savitri Jadhav and Nathrao B. Jadhav

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different…

Abstract

Purpose

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different materials for different components that too without compromising strength.

Design/methodology/approach

A 3D computer-aided design (CAD) model of a hexacopter with a regular hexagonal frame is presented. Furthermore, a finite element model is developed to perform a structural analysis and determine Von Mises stress and strain values along with deformations of different components of the proposed hexacopter design.

Findings

The results establish that carbon fibre outperforms acrylonitrile butadiene (ABS) with respect to deformations. Within the permissible limits of the stress and strain values, both carbon fiber and ABS are suggested for different components. Thus, a proposed hexacopter offers lighter weight, high strength and low cost.

Originality/value

The use of different materials for different components is suggested by making use of static structural analysis. This encourages new research work and helps in developing new applications of hexacopter, and it has never been reported in literature. The suggested materials for the components of the hexacopter will prove to be suitable considering weight, strength and cost.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 16 June 2023

Matias G. Enz and Douglas M. Lambert

Grounded in contingency theory and strategic fit theory, the goal for this research was to determine if managers differentiate in terms of the degree of partnership when…

Abstract

Purpose

Grounded in contingency theory and strategic fit theory, the goal for this research was to determine if managers differentiate in terms of the degree of partnership when allocating resources for planning, joint operating controls, communication and other management components to relationships and if this differentiation is based on the Partnership Model (Lambert et al., 1996).

Design/methodology/approach

In total, 381 managers representing 31 relationships participated in one-and-a-half-day partnership meetings, and the authors analyzed how the management components were implemented in each relationship compared to the recommendations in the Partnership Model.

Findings

Managers did not differentiate types of partnerships which led to over-resourcing relationships with low potential and under-resourcing those with the highest potential for creating value. The principles of contingency theory and strategic fit were not used for managing relationships.

Research limitations/implications

Contingency theory combined with the relationship view suggests that management components should not be implemented at the same level for all relationships, but in the 31 relationships studied different partnership types were not managed based on their potential.

Practical implications

The research reinforces the need for a formal structure like the Partnership Model to establish joint goals for a relationship and guide management in implementation.

Originality/value

Effective supply chain management depends on the ability of managers to differentiate among partnership types and fit relational mechanisms that are appropriate. However, researchers tend to generalize their findings to all partnerships regardless of potential. The authors found support for the Partnership Model published in IJLM in 1996 as a method to resource different types of partnerships following the contingency perspective and strategic fit theory.

Details

The International Journal of Logistics Management, vol. 35 no. 2
Type: Research Article
ISSN: 0957-4093

Keywords

1 – 10 of over 5000