Search results

1 – 2 of 2
Article
Publication date: 9 November 2022

Zhicheng Song, Xiang Li, Xiaolong Yang, Yao Li, Linkang Wang and Hongtao Wu

This paper aims to improve the kinematic modeling accuracy of a spatial three-degrees-of-freedom compliant micro-motion parallel mechanism by proposing a modified modeling method…

182

Abstract

Purpose

This paper aims to improve the kinematic modeling accuracy of a spatial three-degrees-of-freedom compliant micro-motion parallel mechanism by proposing a modified modeling method based on the structural matrix method (SMM).

Design/methodology/approach

This paper analyzes the problem that the torsional compliance equation of the circular notched hinge is no longer applicable because it is subject to bilateral restrained torsion. The torsional compliance equation is modified by introducing the relative length coefficient. The input coupling effect, which is often neglected, is considered in kinematic modeling. The symbolic expression of the input coupling matrix is obtained. Theory, simulation and experimentation are presented to show the validity of the proposed kinematic model.

Findings

The results show that the proposed kinematics model can improve the modeling accuracy by comparing the theoretical, finite element method (FEM) and experimental method.

Originality/value

This work provides a feasible scheme for CMPM kinematics modeling. It can be better applied to the optimization design based on the kinematic model in the future.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 August 2004

Tien‐Fu Lu, Daniel C. Handley, Yuen Kuan Yong and Craig Eales

Micromanipulation has enabled numerous technological breakthroughs in recent years, from advances in biotechnology to microcomponent assembly. Micromotion devices commonly use…

1840

Abstract

Micromanipulation has enabled numerous technological breakthroughs in recent years, from advances in biotechnology to microcomponent assembly. Micromotion devices commonly use piezoelectric actuators (PZT) together with compliant mechanisms to provide fine motions with position resolution in the nanometre or even sub‐nanometre range. Many multiple degree of freedom (DOF) micromotion stages have parallel structures due to better stiffness and accuracy than serial structures. This paper presents the development of a three‐DOF compliant micromotion stage with flexure hinges and parallel structure for applications requiring motions in micrometres. The derivation of a simple linear kinematic model of the compliant mechanism is presented and simulation results before and after calibration are compared with results from finite element (FE) modeling and experiments. The position control system, which uses an experimentally determined constant‐Jacobian, and its performance are also presented and discussed.

Details

Industrial Robot: An International Journal, vol. 31 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 2 of 2