Search results

1 – 10 of over 9000
Article
Publication date: 10 June 2014

Bo Jansen, Eugeni L. Doubrovski and Jouke C. Verlinden

This paper investigates how designers exploit the full potential of additive manufacturing (AM). AM yields a broad range of advantageous properties including the possibility to…

Abstract

Purpose

This paper investigates how designers exploit the full potential of additive manufacturing (AM). AM yields a broad range of advantageous properties including the possibility to fabricate mechanical multi-body structures.

Design/methodology/approach

This case study explores the possibilities and limitations in designing mechanical multi-body structures for AM, focused on the development of a selective laser sintering (SLS) version of Theo Jansen’s “Strandbeest” walking mechanism, dubbed Animaris Geneticus Parvus (AGP). We discuss the design process and considerations involved and attempt to distill design guidelines.

Findings

Novel structural solutions were developed to enable SLS fabrication of the AGP, specifically cross-shaped pivot pins, increased clearance between bodies, spacing studs, restricting axial play with pins, partial disassemblies and increased clearance around extremities. The result is a functioning walking mechanism of 74 components can be fabricated at once without human intervention.

Research limitations/implications

This article represents a case study; although it does mention adapted design rules for SLS, its greatest contribution is the holistic approach – to integrate a number of engineering challenges in one prototypical manifestation.

Practical implications

Part consolidation by AM could bring great benefits in future product design applications. The findings show that complex multi-body mechanical structures with more than 70 elements are feasible by AM without assembly. This presents new business opportunities for AM service bureaus and novel product opportunities for designers.

Originality/value

As a case study, this article provides inspiration of the mechanical complexity beyond regular products – from original idea to end result. For researchers, key contribution is the approach in obtaining design optimization strategies which provides engineering designers with a new language to consider SLS.

Article
Publication date: 6 April 2012

Zhijia Xu, Yuan Li, Jie Zhang, Hui Cheng, Shoushan Jiang and Wenbin Tang

Assembly Sequence Planning integrating assembly Resources (ASPR) is a trend in industry. Because of the introduction of resource, the complexity of ASPR for complex product…

Abstract

Purpose

Assembly Sequence Planning integrating assembly Resources (ASPR) is a trend in industry. Because of the introduction of resource, the complexity of ASPR for complex product increases drastically; besides, the dynamic property of resource and the co‐existence of assembly sequence and disassembly sequence (ASDS) make the problems in ASPR more difficult. The dynamic assembly model (DAM) based on polychromatic sets (PS) theory was proposed to address these issues.

Design/methodology/approach

First, a strategy was presented to simplify ASPR, taking advantage of assembly sequence generated in the phase of assembly design which considers no resource. Secondly, the concept of DAM was discussed, and some principles/criteria for DAM modeling were generalized from experience. Then, the DAM was modeled by formalizing its incidence relations as PS matrix, and refined based on the formalized criteria, which were expressed as PS locating and collision relation models. Finally, an application case was studied to demonstrate the effectiveness of the method.

Findings

The approach could reduce the complexity of ASPR significantly, and was able to identify dynamic resource, model DAM and handle the co‐existence of ASDS effectively.

Practical implications

The method may change the manual pattern of ASPR in simulation environment, and become a potential tool to change the pattern of traditional ASP which comes to work from scratch, by utilizing the upstream information of product design.

Originality/value

Different from traditional assembly model, DAM was a local model which consists of partial components of product and resource, and the DAM‐based ASPR approach would make the computational complexity of product assembly become more linear than exponential.

Article
Publication date: 28 January 2014

Hong Xiao, Yuan Li, Jian-Feng Yu and Hui Cheng

Virtual assembly process plays an important role in assembly design of complex product and is typically time- and resource-intensive. This paper aims to investigate a dynamic

Abstract

Purpose

Virtual assembly process plays an important role in assembly design of complex product and is typically time- and resource-intensive. This paper aims to investigate a dynamic assembly simplification approach in order to demonstrate and interact with virtual assembly process of complex product in real time.

Design/methodology/approach

The proposed approach regards the virtual assembly process of complex product as an incremental growth process of dynamic assembly. During the growth process, the current-assembled-state assembly model is simplified with appearance preserved by detecting and removing its invisible features, and the to-be-assembled components are simplified with assembly features preserved using conjugated subgraphs matching method based on an improved subgraph isomorphism algorithm.

Findings

The dynamic assembly simplification approach is applied successfully to reduce the complexity of computer aided design models during the virtual assembly process and it is proved by several cases.

Originality/value

A new assembly features definition is proposed based on the notion of “conjugation” to assist the assembly features recognition, which is a main step of the dynamic assembly simplification and has been translated into conjugated subgraphs matching problem. And an improved subgraph isomorphism algorithm is presented to address this problem.

Details

Assembly Automation, vol. 34 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 4 November 2019

Hongwang Du, Wei Xiong, Haitao Wang and Zuwen Wang

Cables are widely used, and they play a key role in complex electromechanical products such as vehicles, ships, aircraft and satellites. Cable design and assembly significantly…

Abstract

Purpose

Cables are widely used, and they play a key role in complex electromechanical products such as vehicles, ships, aircraft and satellites. Cable design and assembly significantly impact the development cycle and assembly quality, which is be-coming a key element affecting the function of a product. However, there are various kinds of cables, with complex geo-metric configurations and a narrow assembly space, which can easily result in improper or missed assembly, an unreasonable layout or interference. Traditional serial design methods are inefficient and costly, and they cannot predict problems in installation and use. Based on physical modeling, computer-aided cable design and assembly can effectively solve these problems. This paper aims to address virtual assembly (VA) of flexible cables based on physical modeling.

Design/methodology/approach

Much research has focused recently on virtual design and assembly-process planning for cables. This paper systematically reviews the research progress and the current state of mechanical models, virtual design, assembly-process planning, collision detection and geometric configuration and proposes areas for further research.

Findings

In the first instance, the main research groups and typical systems are investigated, followed by extensive exploration of the major research issues. The latter can be reviewed from five perspectives: the current state of mechanical models, virtual design, assembly-process planning, collision detection and geometric configuration. Finally, the barriers that prevent successful application of VA are also discussed, and the future research directions are summarized.

Originality/value

This paper presents a comprehensive survey of the topics of VA of flexible cables based on physical modeling and investigates some new ideas and recent advances in the area.

Details

Assembly Automation, vol. 40 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Book part
Publication date: 8 April 2005

Fredrik von Corswant

This paper deals with the organizing of interactive product development. Developing products in interaction between firms may provide benefits in terms of specialization…

Abstract

This paper deals with the organizing of interactive product development. Developing products in interaction between firms may provide benefits in terms of specialization, increased innovation, and possibilities to perform development activities in parallel. However, the differentiation of product development among a number of firms also implies that various dependencies need to be dealt with across firm boundaries. How dependencies may be dealt with across firms is related to how product development is organized. The purpose of the paper is to explore dependencies and how interactive product development may be organized with regard to these dependencies.

The analytical framework is based on the industrial network approach, and deals with the development of products in terms of adaptation and combination of heterogeneous resources. There are dependencies between resources, that is, they are embedded, implying that no resource can be developed in isolation. The characteristics of and dependencies related to four main categories of resources (products, production facilities, business units and business relationships) provide a basis for analyzing the organizing of interactive product development.

Three in-depth case studies are used to explore the organizing of interactive product development with regard to dependencies. The first two cases are based on the development of the electrical system and the seats for Volvo’s large car platform (P2), performed in interaction with Delphi and Lear respectively. The third case is based on the interaction between Scania and Dayco/DFC Tech for the development of various pipes and hoses for a new truck model.

The analysis is focused on what different dependencies the firms considered and dealt with, and how product development was organized with regard to these dependencies. It is concluded that there is a complex and dynamic pattern of dependencies that reaches far beyond the developed product as well as beyond individual business units. To deal with these dependencies, development may be organized in teams where several business units are represented. This enables interaction between different business units’ resource collections, which is important for resource adaptation as well as for innovation. The delimiting and relating functions of the team boundary are elaborated upon and it is argued that also teams may be regarded as actors. It is also concluded that a modular product structure may entail a modular organization with regard to the teams, though, interaction between business units and teams is needed. A strong connection between the technical structure and the organizational structure is identified and it is concluded that policies regarding the technical structure (e.g. concerning “carry-over”) cannot be separated from the management of the organizational structure (e.g. the supplier structure). The organizing of product development is in itself a complex and dynamic task that needs to be subject to interaction between business units.

Details

Managing Product Innovation
Type: Book
ISBN: 978-1-84950-311-2

Article
Publication date: 31 July 2009

Huibin Sun, Zhiyong Chang and Rong Mo

The purpose of this paper is to solve the asynchrony problem between the logistics stream and the information stream in the complex product assembly executive process.

Abstract

Purpose

The purpose of this paper is to solve the asynchrony problem between the logistics stream and the information stream in the complex product assembly executive process.

Design/methodology/approach

States of assembly and logistics are described by transitions, and implemented via logistics agents and assembly agents. Events in the assembly executive process are described by places, and mapped to radio frequency identification (RFID) tags' states. An agent‐based complex product assembly framework is proposed. Mobile agents are used to encapsulate task and data, and RFID tags' states are able to trigger dispatching of assembly agents and executing of assembly tasks. Assisted by mobile agents' retraction mechanism, on‐site data are carried back when assembly tasks are finished.

Findings

An assembly executive process Petri net and a mobile agent‐based complex product assembly framework are proposed.

Originality/value

Dynamic matching mechanism between assembly tasks and materials is achieved, and controlling and monitoring methods of complex product assembly executive process are enhanced.

Details

Assembly Automation, vol. 29 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 28 September 2010

Yong Hu, Dianliang Wu, Xiumin Fan and Xijin Zhen

Owing to the numerous part models and massive datasets used in automobile assembly design, virtual assembly software cannot simulate a whole vehicle smoothly in real time. For…

Abstract

Purpose

Owing to the numerous part models and massive datasets used in automobile assembly design, virtual assembly software cannot simulate a whole vehicle smoothly in real time. For this reason, implementing a new virtual assembly environment for massive complex datasets would be a significant achievement. The paper aims to focus on this problem.

Design/methodology/approach

A new system named “Grid‐enabled collaborative virtual assembly environment” (GCVAE) is proposed in the paper, and it comprises three parts: a private grid‐based support platform running on an inner network of enterprise; a service‐based parallel rendering framework with a sort‐last structure; and a multi‐user collaborative virtual assembly environment. These components would aggregate the idle resources in an enterprise to support assembly simulation with a large complex scene of whole vehicle.

Findings

The system prototype proposed in the paper has been implemented. The following simulations show that it can support a complex scene in a real‐time mode by using existing hardware and software, and can promote the efficient usage of enterprise resources.

Practical implications

Using the GCVAE, it is possible to aggregate the idle resources in an enterprise to run assembly simulations of a whole automobile with massively complex scenes, thus observably reducing fault occurrence rates in future manufacturing.

Originality/value

The paper introduces a new grid‐enabled methodology into research on collaborative virtual assembly system which can make the best use of idle resources in the enterprise to support assembly simulations with massively complex product models. A video‐stream‐based method was used to implement the system; this enables designers to participate ubiquitously in the simulation to evaluate the assembly of the whole automobile without hardware limitations.

Details

Assembly Automation, vol. 30 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 16 April 2018

Beichuan Yan and Richard Regueiro

The purpose of this paper is to extend complex-shaped discrete element method simulations from a few thousand particles to millions of particles by using parallel computing on…

204

Abstract

Purpose

The purpose of this paper is to extend complex-shaped discrete element method simulations from a few thousand particles to millions of particles by using parallel computing on department of defense (DoD) supercomputers and to study the mechanical response of particle assemblies composed of a large number of particles in engineering practice and laboratory tests.

Design/methodology/approach

Parallel algorithm is designed and implemented with advanced features such as link-block, border layer and migration layer, adaptive compute gridding technique and message passing interface (MPI) transmission of C++ objects and pointers, for high performance optimization; performance analyses are conducted across five orders of magnitude of simulation scale on multiple DoD supercomputers; and three full-scale simulations of sand pluviation, constrained collapse and particle shape effect are carried out to study mechanical response of particle assemblies.

Findings

The parallel algorithm and implementation exhibit high speedup and excellent scalability, communication time is a decreasing function of the number of compute nodes and optimal computational granularity for each simulation scale is given. Nearly 50 per cent of wall clock time is spent on rebound phenomenon at the top of particle assembly in dynamic simulation of sand gravitational pluviation. Numerous particles are necessary to capture the pattern and shape of particle assembly in collapse tests; preliminary comparison between sphere assembly and ellipsoid assembly indicates a significant influence of particle shape on kinematic, kinetic and static behavior of particle assemblies.

Originality/value

The high-performance parallel code enables the simulation of a wide range of dynamic and static laboratory and field tests in engineering applications that involve a large number of granular and geotechnical material grains, such as sand pluviation process, buried explosion in various soils, earth penetrator interaction with soil, influence of grain size, shape and gradation on packing density and shear strength and mechanical behavior under different gravity environments such as on the Moon and Mars.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 August 2020

Anil Kumar Gulivindala, M.V.A. Raju Bahubalendruni, S.S. Vara Prasad Varupala and Sankaranarayanasamy K.

Parallel assembly sequence planning (PASP) reduces the overall assembly effort and time at the product development stage. Methodological difficulties at framework development and…

216

Abstract

Purpose

Parallel assembly sequence planning (PASP) reduces the overall assembly effort and time at the product development stage. Methodological difficulties at framework development and computational issues at their implementation made the PASP complex to achieve. This paper aims to propose a novel stability concept for subassembly detection to minimize the complexities in PASP.

Design/methodology/approach

In this research, a heuristic method is developed to identify, represent and implement the stability predicate to perform subassembly detection and assembly sequence planning (ASP) at the further stages. Stability is organized into static, dynamic, enriched and no stability between the mating assembly parts. The combination of parts that possesses higher fitness is promoted to formulate the final solution about PASP.

Findings

The results obtained by applying the proposed concept on complex configurations revealed that stability predicate plays a dominant role in valid subassembly detection and final sequence generation further.

Originality/value

The value of the presented study lies in the three types of stability conditions and effective integration to existed ASP method. Unlike the existed heuristics in subassembly detection, the proposed concept identifies the parallel subassemblies during ASP.

Article
Publication date: 2 March 2015

Yuval Cohen

The purpose of this paper is to describe a comprehensive modelling technique that supports the assembly of very complex products that require intensive use of both computerized…

Abstract

Purpose

The purpose of this paper is to describe a comprehensive modelling technique that supports the assembly of very complex products that require intensive use of both computerized worker guidance and automation. The modelling enables the planning of this complex process.

Design/methodology/approach

The proposed approach utilizes and extends typical product documentation (such as route cards and bill of materials (BOM)) to form hierarchical Petri net in a stepwise process. The suggested framework models the dynamic progress of the assembly process, and can generate route card instructions for manual operations, or ladder diagrams (LDs) for automation.

Findings

The model can help the generation of computerized control over route cards for manual assembly operations. For automated processes, the translation algorithm of the model to LD enables its application on currently available equipment (programmable logic controllers (PLCs)).

Research limitations/implications

The proposed framework heavily depends on the BOM data quality. So it is crucial to verify that the BOM data is not ill-defined before applying the proposed framework. Future research could report on the implementation of this model in assembly processes, or suggest another modelling technique.

Practical implications

The model enables the integration of computer control over both manual and automated assembly processes. This enables seamless transition between these two very different operations. This ability carries the promise of reducing the cost of code generation and maintenance, and contributes to the progress towards more flexible automation.

Originality/value

This paper presents a new comprehensive modelling technique that may support planning, simulating, tracing, and controlling the assembly process. The technique for the first time integrates modelling of both manual and automated assembly operation.

Details

Journal of Manufacturing Technology Management, vol. 26 no. 2
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 10 of over 9000