Search results

1 – 10 of over 2000
Article
Publication date: 18 April 2017

Xinjin Liu and Xingfeng Wang

Spun silk is one of the top grade textile materials, and its products have high added value and meet the needs of the market. However, the technology level and process design of…

Abstract

Purpose

Spun silk is one of the top grade textile materials, and its products have high added value and meet the needs of the market. However, the technology level and process design of silk spinning are still much lower than cotton spinning; especially singeing is applied on spun silk yarn, and generates waste materials. The purpose of this paper is to introduce a kind of pneumatic compact spinning, four-line compact spinning (FLCS), into silk spinning and study the corresponding spun yarn qualities.

Design/methodology/approach

First, taking the silk spinning frame FK501 as an example, the process of modification of FLCS is presented. Then, three kinds of spun silk yarns, 80 Nm (12.5tex), 100 Nm (10tex) and 120 Nm (8.3tex), are spun on the common silk spinning frame FK501 and the spinning frame modified with FLCS. The evenness, breaking strength and hairiness of spun yarns are tested and comparatively analyzed. After the ply yarn production, three singeing procedures should be applied on the ring ply yarns, while only two singeing procedures should be applied on the compact ply yarns, which is beneficial for material saving.

Findings

The results show that compared with ring spun silk yarns, the comprehensive quality of compact spun silk yarns is improved, especially the harmful long hairiness (=3 mm) of yarn. Compared with the single spun silk yarn, the comprehensive qualities of the ply yarn are improved; especially, the breaking strength of the ply yarns is two times larger than the single yarn. After singeing, the hairiness of the ply yarn is decreased greatly, and the evenness is also improved, while the strength is decreased. Compared with ring spun silk yarn, the singeing times of compact spun silk yarn can be decreased, and the gas consumption in each singeing is also decreased, which is beneficial for material saving.

Originality/value

In this paper, a kind of pneumatic compact spinning, FLCS, is introduced into the silk spinning. It is shown that compared with ring spun silk yarns, the comprehensive quality of compact spun silk yarns is improved, especially the harmful long hairiness (=3 mm) of yarn. After the ply yarn production, three singeing procedures should be applied on the ring ply yarns, while only two singeing procedures should be applied on the compact ply yarns, which is beneficial for material saving.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 November 2017

Zhou Rongmei and Qin Xiaoxuan

As one natural fiber, spun silk is one of the top-grade textile materials and has attracted more and more attentions on textile processing. The purpose of this paper is to…

Abstract

Purpose

As one natural fiber, spun silk is one of the top-grade textile materials and has attracted more and more attentions on textile processing. The purpose of this paper is to introduce one kind of pneumatic compact spinning, four-line compact spinning (FLCS), into the silk spinning, and study and comparatively analyze corresponding yarn and fabric qualities.

Design/methodology/approach

First, two kinds of spun silk and viscose blend yarns, 120 Nm (8.3 tex) and 205 Nm (4.9 tex), were spun on the common ring spinning frame FK501 and spinning frame modified by FLCS, respectively. Then, after the plying and singeing procedures, the ply yarns 120 and 205 Nm/2 were produced. The evenness, breaking strength, and hairiness of the spun bobbin yarns and ply yarns were tested and comparatively analyzed. Then, properties of corresponding woven fabric, including the weight, thickness, permeability, stiffness, softness, smoothness, draping, wrinkle recovery, hand-touching (RHV), were measured and comparatively analyzed.

Findings

For the spun yarns, it is shown that by using the compact spinning method, the comprehensive quality of spun-silk blend bobbin and ply yarns are improved. For the fabrics, it is shown that compared with the fabric made of ring yarn, the weight and thickness of fabric made of compact yarn decreased, and the air permeability of fabric increased, but the difference is tiny. Meanwhile, the stiffness, smoothness of fabric made of compact yarn increased slightly, but the softness decreased slightly, leading to a little worse fabric hand-touching.

Originality/value

In the paper, one kind of pneumatic compact spinning, FLCS, was introduced into the silk spinning, and corresponding yarn and fabric qualities were studied and comparatively analyzed.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2016

Xinjin Liu, Hong Zhang and Xuzhong Su

Pneumatic compact spinning is the most widely used compact spinning method at present, in which the negative pressure airflow is used to condense the fiber bundle and decrease the…

Abstract

Purpose

Pneumatic compact spinning is the most widely used compact spinning method at present, in which the negative pressure airflow is used to condense the fiber bundle and decrease the spinning triangle. Compact spinning with perforated drum and lattice apron are mainly two kinds of pneumatic compact spinning now. The purpose of this paper is to study the comparative analysis on four kinds of pneumatic compact spinning systems, including two kinds of compact spinning with perforated drum: Rieter’s COM4 and complete condensing spinning (CCS), two kinds of compact spinning with lattice apron: Sussen’s three-line compact spinning (TLCS) and Toyota’s four-line compact spinning (FLCS).

Design/methodology/approach

First, the basic properties of four systems were introduced and comparatively analyzed. Then, the 29.2 tex (20S), 14.6 tex (40S), 9.7 tex (60S) and 7.3 tex (80S) combed cotton yarns were spun in the four pneumatic compact spinning systems and ring spinning system, respectively. The evenness, breaking strength and hairiness of spun yarns were tested. Finally, the properties of corresponding woven fabric were tested.

Findings

It is shown that comparing to compact spinning with lattice apron, the disposable input cost of compact spinning with perforated drum is higher, but the maintenance cost is lower. Comparing to compact spinning with lattice apron, the evenness of yarn spun by compact spinning with perforated drum is improved whereas the breaking strength is decreased. Furthermore, although harmful long hairiness (=3 mm) of yarn spun by CCS is a little more, the beneficial short hairiness (1-2 mm) is also more, which can make the fabric fullness and have better comfortable feeling.

Originality/value

In the paper, comparative analysis on four kinds of pneumatic compact spinning systems, compact spinning with perforated drum: Rieter’s COM4 and CCS, and compact spinning with lattice apron: Sussen’s TLCS and Toyota’s FLCS, were studied. The basic properties, spun yarn qualities and properties of corresponding woven fabric of four systems were analyzed comparatively.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 21 June 2018

Xuzhong Su, Xinjin Liu and Xiaoyan Liu

Pneumatic compact spinning is the most widely used compact spinning method at present, in which the negative pressure airflow is used to condense the fiber in order to decrease…

Abstract

Purpose

Pneumatic compact spinning is the most widely used compact spinning method at present, in which the negative pressure airflow is used to condense the fiber in order to decrease the spinning triangle and improve the yarn qualities. Therefore, the research on flow field in the condensing zone is always the emphasis for pneumatic compact spinning. The paper aims to discuss these issues.

Design/methodology/approach

By using finite element method (FEM), the flow field in two kinds of pneumatic compact spinning was studied. Taking three kinds of cotton yarns as examples, with the help of high-speed camera system OLYMPUS i-SPEED3, the motion trajectory of fiber strand in the condensing zone was obtained. Three-dimensional physical models of the condensing zone of the two compact spinning systems were obtained according to the measured parameters of practical spinning systems.

Findings

It is shown that on the both left edge of B1 line and right edge of B2 line, the airflow inflows to the center line of suction slot, and the condensed effects are produced, correspondingly. In the condensing zone, there are three condensing processes acting on the fiber strand, including the rapid condensing effects in the front condensing zone, the adequately condensing effects in the middle condensing zone, and stable output effects in the back condensing zone.

Originality/value

By using FEM, numerical simulations of three-dimensional flow field in condensing zone for two kinds of pneumatic compact spinning with lattice apron were presented, and corresponding spun yarn qualities were analyzed.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 August 2017

Li Yinghui, Chunping Xie and Xinjin Liu

The purpose of this paper is to know airflow field and its distribution of pneumatic compact spinning systems. Complete compact spinning (CCS) and four-line rollers compact

Abstract

Purpose

The purpose of this paper is to know airflow field and its distribution of pneumatic compact spinning systems. Complete compact spinning (CCS) and four-line rollers compact spinning (FRCS) are both two kinds of pneumatic compact spinning systems, which utilizes airflow in condensing equipment to condense fiber bundle and improve yarn properties.

Design/methodology/approach

The paper opted for an exploratory study using finite element method, the airflow field in the condensing area of CCS and FRCS were simulated. First, a periodic movement of the fibers in bundle in condensing area was detected, and the yarn tracks were described veritably under the high-speed-video-camera and AutoCAD Software. Then the physical models of the condensing zone were constructed according to the physical parameters of the practical system. The simulation of airflow velocities were extracted along the yarn tracks using ANSYS Software. Finally, the numerical results were verified by spinning experiments.

Findings

The results show that the negative velocity component along the Y-axis helps keeping beneficial hairiness. CCS has higher negative velocity value and more abundant beneficial hairiness than FRCS. The velocity component in the X-axis direction has a direct effect on yarn evenness. For the same liner density of CCS and FRCS, the larger the value of the velocity component on X-axis is, the better the yarn evenness is. For 9.7tex, CCS has larger velocity component in the X-axis direction and better yarn evenness than FRCS, showing that CCS is more suitable for spinning fine count yarn. The velocity component in the Z-axis direction has a direct effect on breaking strength. CCS has little velocity component in the Z-axis direction and little breaking strength than FRCS.

Originality/value

To know airflow field and its distribution by finite element method is helpful to investigate the condensing principles of the fiber bundle and improve yarn properties.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 November 2017

Kumar K.V., Sampath V.R. and Prakash C.

Air permeability of knitted fabrics is normally measured for the samples in their unstretched state. But, this air permeability values indicate the ability of these garments to…

Abstract

Purpose

Air permeability of knitted fabrics is normally measured for the samples in their unstretched state. But, this air permeability values indicate the ability of these garments to allow air through them when they are not in use. But, the real-time condition is different and certainly the knitted garments mentioned above will subject to a degree of stretch during their usage. So, the measurement of air permeability under stretch and the fabric properties which would influence the air permeability of weft-knitted fabrics in their stretched state is of paramount importance. The paper aims to discuss these issues.

Design/methodology/approach

The aim of this research work is to investigate the change in air permeability values under the incremental extension of cotton tubular weft-knitted fabrics produced from the yarns of different spinning systems.

Findings

From the results, it is evident that the pique fabric samples of compact spun yarn displayed the highest air permeability values during the incremental stretch at all the three relaxation states. It is followed by the pique samples of ring spun yarn. Next to pique samples, the jersey samples made from the compact yarn and ring spun yarn revealed more air permeability, respectively. The core spun pique samples and core spun jersey samples displayed the least air permeability values, respectively. But, the pique and jersey samples made up of ring yarn and compact yarn showed gradual reduction in their air permeability towards the incremental stretch and the core spun pique samples and core spun jersey samples were uniformly seen with gradual increase in their air permeability during the incremental stretch.

Originality/value

Very limited quantity of research has been carried out in this area. So, a novel attempt has been made in this research work to investigate the influence of incremental stretch on air permeability of single knit structures.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 November 2015

Ihab El-Sayed and S.M. Saleh

The effects that spinning technology and spinning parameters have on the color strength (K/S), strength, and breaking elongation of post dyed and mercerized yarns are investigated…

Abstract

The effects that spinning technology and spinning parameters have on the color strength (K/S), strength, and breaking elongation of post dyed and mercerized yarns are investigated in this study. The emphasis of the study is on the selection of long stable Egyptian cotton varieties, namely Giza 80, Giza 86, and extra long stable Giza 92. The cotton samples are spun by using compact, ring, and open end spinning technologies. For the purpose of this study, different yarn counts and twist multipliers are used. The mechanical properties, such as the tensile strength and breaking elongation of the produced yarn are investigated and compared before and after the mercerization treatment (slack and tension), followed by a reactive dyeing process. All of the samples are prepared for dyeing after mercerization. The dyeing performance in terms of the K/S is studied. When the results are examined, it is found that the samples that have undergone (bleaching + slack mercerization + reactive dyeing) generally have higher K/S values than samples that have undergone (bleaching + tension mercerization + reactive dyeing) and (bleaching + non-mercerization + reactive dyeing) respectively. Open-end spun yarns have a higher K/S compared to the compact and ring spun yarns with the lowest count yarn and twist level. The strength percentages are higher for compact, then ring and finally open-end spun yarns respectively with tension mercerization. There is no noticeable difference in the elongation% for all of the treatment processes. The authors have used quality engineering reproducibility and repeatability (R&R) tools to guarantee the repeatability and reproducibility of the results in this research paper.

Details

Research Journal of Textile and Apparel, vol. 19 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 4 April 2019

Esin Sarıoğlu

The purpose of this paper is to compare the bursting strength, bursting distension, air permeability and wale wise wicking rate properties of recycled polyester (r-PET) and virgin…

Abstract

Purpose

The purpose of this paper is to compare the bursting strength, bursting distension, air permeability and wale wise wicking rate properties of recycled polyester (r-PET) and virgin polyester (v-PET) raw materials from which single jersey knitted fabric samples are manufactured. Meanwhile, numerical optimization method was used in predetermined parameters to determine the optimum r-PET and v-PET blend ratio and yarn manufacturing technology. In the optimization analysis, the average values of the important yarn and fabric properties inspected were taken as a target according to the 50 percent proportion of r-PET and v-PET fiber for both compact and ring yarn manufacturing technology.

Design/methodology/approach

To encourage the use of value-added textile products produced from recycling PET bottle with the focus of social responsibility is a condition that should be evaluated within the scope of waste management. The recycling of PET bottles and finding new opportunities for the uses in different field are crucial for both contributing environmental economy and conserving natural energy resources. The most important alternative ways is to use the r-PET fiber from recycling PET bottle in textile industry. In this study, 19.7 tex r-PET/cotton and v-PET/cotton-blended compact and ring spun yarns were produced at different blending ratios at the same production parameters.

Findings

Results showed that blend type, blend ratio and yarn manufacturing technology have statistical significance effect on bursting strength and air permeability. Besides, it was found that blend type has no significance on wale wise wicking rate unlike other parameters. Optimization analysis indicated that single jersey knitted fabric with v-PET/CO 58.62/41.38 percent compact yarn had higher desirability with the value of 0.72.

Originality/value

At the present time, r-PET fiber is blended in small amount (approximately 5–15 percent blend ratio) with both cotton and polyester together. In addition, it is possible using different fiber blend types instead of cotton and polyester according to the usage area. The most important question is to determine the amount of r-PET proportion. In other words, both optimum yarn/fabric quality parameters should be ensured and at the same time life cycle of the apparels should not be short when the optimum r-PET proportion is taken into consideration.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 November 2018

Qin Xiaoxuan, Hui’e Liang, Xuzhong Su and Xinjin Liu

As a natural fiber, yakwool has attracted much attention in textile processing due to its excellent properties and wearabilities. However, the main colors of yakwool are black and…

Abstract

Purpose

As a natural fiber, yakwool has attracted much attention in textile processing due to its excellent properties and wearabilities. However, the main colors of yakwool are black and brown. Therefore, for extending the application scopes of the fiber, the decolorization of the yakwool fiber is usually needed, especially for the black fiber. The paper aims to discuss this issue.

Design/methodology/approach

In the paper, the properties of the yakwool fiber were tested first, especially the melanin granules in the fiber. Then, the decolorization of the yakwool fiber was studied using the oxidation–reduction decolorization method, and corresponding optimal process of the decolorization was given. Then, the properties of the decolorized yakwool fiber were tested and compared with those of the original fiber.

Findings

It is shown that, after decolorization, the physical and mechanical properties of the fiber were deteriorated, especially in terms of the strength and elongation. Therefore, the fiber became shorter and thinner, and the scales were damaged. When compared with the yarn spun from the original yakwool fiber, it was observed that the properties of the yarn spun from the decolorized yakwool fiber deteriorated because of the deterioration in the properties of the original fiber.

Originality/value

In the paper, for extending the application scopes of the yakwool fiber, the decolorization of the yakwool fiber was studied.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 March 2022

Abenezer Fikre Hailemariam and Nuredin Muhammed

The purpose of this study is to investigate the mechanical properties of denim fabrics constructed from ring-spun and open-end rotor spun yarns.

Abstract

Purpose

The purpose of this study is to investigate the mechanical properties of denim fabrics constructed from ring-spun and open-end rotor spun yarns.

Design/methodology/approach

Yarns of 10s Ne count using cotton fibers were spun using the ring and open-end rotor spinning technologies. The yarns were used to produce a denim fabric on an air-jet loom with a 3/1 twill weave structure. Mechanical tests – tensile strength, tear strength, abrasion resistance and pilling resistance – of denim fabrics were evaluated. The test results were analyzed using analysis of variance with the help of Software Package for Social Sciences.

Findings

Denim fabrics made by using ring-spun yarns exhibited better tensile and tear strength properties than denim fabrics made by using open-end rotor spun yarns. On the contrary, denim produced using open-end rotor yarns have better abrasion resistance, pilling resistance and air permeability than those produced using ring-spun yarns.

Originality/value

Both spinning techniques have a significant influence on the properties of denim fabrics. Whenever better tensile and tear strength is required, it is better to use ring-spun yarns, while if the requirement is better abrasion resistance and pilling resistance with high air permeability, then open-end rotor spun yarns shall be used.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of over 2000