Search results

1 – 10 of over 1000
Article
Publication date: 12 March 2024

Anyuan Shen and Shuguang Liu

Comfort foods consumption and linkages to stress coping strategies have received little attention in the business research on food products and services. This paper aims to…

Abstract

Purpose

Comfort foods consumption and linkages to stress coping strategies have received little attention in the business research on food products and services. This paper aims to explore comfort foods consumption among older Americans and how stress-coping strategies are related to their consumption frequency and variety of comfort foods.

Design/methodology/approach

Older Americans aged 50–99 years (N = 1,428) in the Health and Retirement Study were surveyed on their frequency and variety of comfort foods consumption and their consumption coping strategies. Data were analyzed and regression models were estimated.

Findings

Demographically, baby boomer, male, and non-Hispanic whites reported higher frequency and variety of comfort foods consumption. Comfort foods consumption in frequency and variety was significantly higher (lower) when “eat more” (“use alcohol”) was the endorsed coping strategy.

Originality/value

Research findings furthered research on the consumption of comfort foods among older American adults and added new insights into their coping behavior, both of which may help businesses be more targeted in serving comfort foods to the mature market and the public sector to tailor their services to older adults.

Details

British Food Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 28 September 2023

Williams Miller Appau, Elvis Attakora-Amaniampong and Iruka Chijindu Anugwo

To significantly adopt and improve indoor energy efficiency in building infrastructure in developing countries can be a challenging venture. Thus, this study aimed to assess the…

Abstract

Purpose

To significantly adopt and improve indoor energy efficiency in building infrastructure in developing countries can be a challenging venture. Thus, this study aimed to assess the satisfaction of indoor environmental quality and its effect on energy use intensity and efficient among student housing.

Design/methodology/approach

The study is quantitative and hinged on the contrast theory. A survey of 1,078 student residents living in purpose-built student housing was contacted. Using Post-Occupancy Evaluation and Multiple Linear Regression, critical variables such as thermal comfort, visual comfort and indoor air quality and 21 indicators were assessed. Data on annual energy consumption and total square metre of the indoor area were utilised to assess energy use intensity.

Findings

The study found a direct relationship between satisfaction with indoor environmental quality and energy use intensity. The study showed that students were more satisfied with thermal comfort conditions than visual and indoor air quality. Overall, these indicators contributed to 75.9% kWh/m2 minimum and 43.2% kWh/m2 maximum energy use intensity in student housing in Ghana. High occupancy and small useable space in student housing resulted in high energy use intensity.

Practical implications

Inclusions of sustainable designs and installation of smart mechanical systems are feedback to student housing designers. Again, adaptation to retrofitting ideas can facilitate energy efficiency in the current state of student housing in Ghana.

Originality/value

Earlier studies have argued for and against the satisfaction of indoor environmental quality in student housing. However, these studies have neglected to examine the impact on energy use intensity. This is novel because the assessment of energy use intensity in this study has a positive influence on active design incorporation among student housing.

Details

Property Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-7472

Keywords

Article
Publication date: 23 October 2023

Francis O. Uzuegbunam, Fynecountry N. Aja and Eziyi O. Ibem

This research aims to investigate the influence of building design on the thermal comfort of occupants of naturally ventilated hospital (NVH) wards to identify the aspects with…

Abstract

Purpose

This research aims to investigate the influence of building design on the thermal comfort of occupants of naturally ventilated hospital (NVH) wards to identify the aspects with the most significant influence on the thermal comfort of hospital buildings during the hot-dry season in the hot-humid tropics of Southeast Nigeria.

Design/methodology/approach

Field measurements, physical observations and a questionnaire survey of 60 occupants of the wards of the Joint Presbyterian Hospital, Uburu in Ebonyi State, Nigeria were undertaken. The data were analysed using Humphreys' neutral temperature formula, descriptive statistics and multiple regression analysis.

Findings

The results revealed that the neutral temperature for the wards ranges from 26.2 °C to 29.9 °C, the thermal condition in the wards was not comfortable because it failed to meet the ASHRAE Standard 55 as only 65% of the occupants said the thermal condition was acceptable. The number and sizes of windows, building orientation, the presence of high-level windows and higher headroom significantly influenced the occupants' thermal comfort vote.

Practical implications

This research is valuable in estimating comfort temperature and identifying aspects that require attention in enhancing the capacity of NVH wards to effectively meet the thermal comfort needs of occupants in the hot-humid tropics of Southeast Nigeria and other regions that share similar climatic conditions.

Originality/value

To the best of the authors’ knowledge, this is the first study of this nature that provides valuable feedback for building design professionals on the performance of existing hospital buildings in meeting users' thermal comfort needs in the hot-dry season of the hot-humid tropics in Southeast Nigeria.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 28 March 2023

Ibrahim Neya, Daniel Yamegueu, Adamah Messan, Yezouma Coulibaly, Arnaud Louis Sountong-Noma Ouedraogo and Yawovi Mawuénya Xolali Dany Ayite

The stabilization of earthen blocks improves their mechanical strength and avoids adobe construction erosion due to rainwater. However, the stabilization affects the thermal…

Abstract

Purpose

The stabilization of earthen blocks improves their mechanical strength and avoids adobe construction erosion due to rainwater. However, the stabilization affects the thermal properties of the earthen blocks, and thus their capacity to provide adequate thermal comfort to occupants. This article examines the influence of cement and geopolymer binders on thermal comfort in compressed earthen buildings in hot and arid climates.

Design/methodology/approach

The test cell is on the building platform in Burkina Faso. The building is made of compressed earth blocks (CEB) consisting of laterite, water and binder. The thermal models of the building were implemented in EnergyPlus v9.0.1 software. Empirical validation is used to check whether the model used for the thermal dynamic simulation can reproduce with accuracy the thermal behavior in a real situation. The adaptive thermal comfort model of ASHRAE 55–2010 was used to assess thermal comfort in long-term hot and dry tropical conditions.

Findings

The results show that the CEB buildings remain hot despite the use of cement or geopolymer binder. Indeed, with both cement and geopolymer binders, on a daily basis, 19 h and 15 h are uncomfortable during, respectively, the hot and cold seasons. An increase of 1% in cement content raises the comfort hours by 9.2 h during the hot season and 11.7 h during the cold season. Hence, the comfort time varies linearly with the cement content in the building material. Moreover, there is no linear relationship between comfort time and geopolymer rate.

Research limitations/implications

Complementary work should also assess the influence of stabilization on building humidity levels. In fact, earthen materials are very sensitive to outdoor humidity and indoor humidity affects thermal comfort even if it is not taken into account in the ASHRAE adaptive thermal comfort model.

Practical implications

The present study will certainly contribute to a better valorization of clay potential in countries with similar climatic conditions.

Social implications

The use of geopolymer binder is a suitable ecological option to replace the cement binder. It is important to mention that nighttime comfort can be increased through passive strategies such as natural ventilation.

Originality/value

Most CEB material stabilization analyses including cement and geopolymer ones were mostly investigated at the laboratory scale and less at the building scale. Also, the influence of the binder rate on the thermal performance of buildings made of cement and geopolymer has not yet been assessed. This paper fills this gap of knowledge by assessing the impact of cement and geopolymer binder rates on the thermal comfort of CEB dwellings.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 21 March 2024

Mohammad Yasser Arafat and Sonal Atreya

The study investigates the relationship between hospital environmental factors and the well-being of geriatric in-patients. It aims to identify the impact of architectural design…

Abstract

Purpose

The study investigates the relationship between hospital environmental factors and the well-being of geriatric in-patients. It aims to identify the impact of architectural design on comfort, safety, privacy and stress levels experienced by elderly patients during their hospital stays.

Design/methodology/approach

Employing a mixed-methods approach, the research assesses the experiences of 100 geriatric in-patients across various hospital types through surveys, observational checklists and state anxiety measurements. The methodology involves examining architectural features, patient perceptions and correlations among environmental variables and patient experiences. Statistical analyses, including correlations and chi-square tests, were employed to discern associations between environmental variables and patient experiences.

Findings

The research identified key architectural features significantly impacting geriatric patients' experiences. Factors such as sturdy beds, furniture quantity, lighting conditions, proximity to facilities and ward occupancy levels were found to influence spatial, sensory and social comfort. Notably, proximity to facilities and control over the immediate environment were crucial for self-control and safety perceptions. Privacy, highly valued by patients, correlated with the presence of curtains and ward occupancy. Moreover, patient stress levels exhibited correlations with autonomy, privacy and ward occupancy.

Originality/value

This research offers significant insights into the criticality of specific architectural elements in enhancing comfort and reducing stress for geriatric in-patients. These findings hold substantial value for healthcare facility design, emphasizing the need to prioritize certain design aspects to promote the well-being of elderly patients during hospitalization.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 5 April 2024

Fateme Akhlaghinezhad, Amir Tabadkani, Hadi Bagheri Sabzevar, Nastaran Seyed Shafavi and Arman Nikkhah Dehnavi

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to…

Abstract

Purpose

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to simulate occupant behavior has emerged as a potential solution. This study seeks to analyze the performance of free-running households by examining adaptive thermal comfort and CO2 concentration, both crucial variables in indoor air quality. The investigation of indoor environment dynamics caused by the occupants' behavior, especially after the COVID-19 pandemic, became increasingly important. Specifically, it investigates 13 distinct window and shading control strategies in courtyard houses to identify the factors that prompt occupants to interact with shading and windows and determine which control approach effectively minimizes the performance gap.

Design/methodology/approach

This paper compares commonly used deterministic and probabilistic control functions and their effects on occupant comfort and indoor air quality in four zones surrounding a courtyard. The zones are differentiated by windows facing the courtyard. The study utilizes the energy management system (EMS) functionality of EnergyPlus within an algorithmic interface called Ladybug Tools. By modifying geometrical dimensions, orientation, window-to-wall ratio (WWR) and window operable fraction, a total of 465 cases are analyzed to identify effective control scenarios. According to the literature, these factors were selected because of their potential significant impact on occupants’ thermal comfort and indoor air quality, in addition to the natural ventilation flow rate. Additionally, the Random Forest algorithm is employed to estimate the individual impact of each control scenario on indoor thermal comfort and air quality metrics, including operative temperature and CO2 concentration.

Findings

The findings of the study confirmed that both deterministic and probabilistic window control algorithms were effective in reducing thermal discomfort hours, with reductions of 56.7 and 41.1%, respectively. Deterministic shading controls resulted in a reduction of 18.5%. Implementing the window control strategies led to a significant decrease of 87.8% in indoor CO2 concentration. The sensitivity analysis revealed that outdoor temperature exhibited the strongest positive correlation with indoor operative temperature while showing a negative correlation with indoor CO2 concentration. Furthermore, zone orientation and length were identified as the most influential design variables in achieving the desired performance outcomes.

Research limitations/implications

It’s important to acknowledge the limitations of this study. Firstly, the potential impact of air circulation through the central zone was not considered. Secondly, the investigated control scenarios may have different impacts on air-conditioned buildings, especially when considering energy consumption. Thirdly, the study heavily relied on simulation tools and algorithms, which may limit its real-world applicability. The accuracy of the simulations depends on the quality of the input data and the assumptions made in the models. Fourthly, the case study is hypothetical in nature to be able to compare different control scenarios and their implications. Lastly, the comparative analysis was limited to a specific climate, which may restrict the generalizability of the findings in different climates.

Originality/value

Occupant behavior represents a significant source of uncertainty, particularly during the early stages of design. This study aims to offer a comparative analysis of various deterministic and probabilistic control scenarios that are based on occupant behavior. The study evaluates the effectiveness and validity of these proposed control scenarios, providing valuable insights for design decision-making.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 22 March 2024

Saghar Hashemi, Amirhosein Ghaffarianhoseini, Ali Ghaffarianhoseini, Nicola Naismith and Elmira Jamei

Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct…

Abstract

Purpose

Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct research tailored to the specific climatic conditions of Australia and New Zealand to ensure accuracy and relevance.

Design/methodology/approach

Given population growth, urban expansions and predicted climate change, researchers should provide a deeper understanding of microclimatic conditions and outdoor thermal comfort in Australia and New Zealand. The study’s objectives can be classified into three categories: (1) to analyze previous research works on urban microclimate and outdoor thermal comfort in Australia and New Zealand; (2) to highlight the gaps in urban microclimate studies and (3) to provide a summary of recommendations for the neglected but critical aspects of urban microclimate.

Findings

The findings of this study indicate that, despite the various climate challenges in these countries, there has been limited investigation. According to the selected papers, Melbourne has the highest number of microclimatic studies among various cities. It is a significant area for past researchers to examine people’s thermal perceptions in residential areas during the summer through field measurements and surveys. An obvious gap in previous research is investigating the impacts of various urban contexts on microclimatic conditions through software simulations over the course of a year and considering the predicted future climate changes in these countries.

Originality/value

This paper aims to review existing studies in these countries, provide a foundation for future research, identify research gaps and highlight areas requiring further investigation.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 12 January 2024

Elvis Attakora-Amaniampong, Iruka Chijindu Anugwo and Miller Williams Appau

This study aims to establish the relationship between indoor environmental quality and residential mobility in student housing in Ghana.

Abstract

Purpose

This study aims to establish the relationship between indoor environmental quality and residential mobility in student housing in Ghana.

Design/methodology/approach

Using multiple regression and exploratory factor analysis through post occupancy evaluation, 26 indoor environmental quality (IEQ) indicators were explored among 1,912 students living in Purpose-Built off-campus university housing in Northern Ghana.

Findings

The study established a negative relationship between indoor environmental quality and residential mobility among student housing in Northern Ghana. Residential mobility is primarily attributed to the dissatisfaction with thermal and indoor air quality.

Practical implications

The negative relationship affects vacancy and rental cashflows for property investors. Also, understanding local environmental conditions can influence future student housing design and enhance thermal and indoor air quality.

Originality/value

The authors contribute to studies on indoor environmental quality in student housing. In addition, establishing the relationship between indoor environmental quality and residential mobility in tropical African regions is novel.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 17 October 2023

Ayatallah Magdy, Ayman Hassaan Mahmoud and Ahmed Saleh

Comfortable outdoor workspaces are important for employees in business parks and urban areas. Prioritizing a pleasant thermal environment is essential for employee productivity…

Abstract

Purpose

Comfortable outdoor workspaces are important for employees in business parks and urban areas. Prioritizing a pleasant thermal environment is essential for employee productivity, as well as the improvement of outdoor spaces between office buildings to enhance social activities and quality of outdoor workplaces in a hot arid climate has been subjected to very little studies Thus, this study focuses on business parks (BPs) landscape elements. The objective of this study is to enhance the user's thermal comfort in the work environment, especially in the outdoors attached to the administrative and office buildings such as the BPs.

Design/methodology/approach

This research follows Four-phases methodology. Phase 1 is the investigation of the literature review including the Concept and consideration of BP urban planning, Achieving outdoor thermal comfort (OTC) and shading elements analysis. Phase 2 is the case study initial analysis targeting for prioritizing zones for shading involves three main methods: social assessment, geometrical assessment and environmental assessment. Phase 3 entails selecting shading elements that are suitable for the zones requiring shading parametrize the selected shading elements. Phase 4 focuses on the optimization of OTC through shading arrangements for the prioritized zones.

Findings

Shading design is a multidimensional process that requires consideration of various factors, including social aspects, environmental impact and structural integrity. Shading elements in urban areas play a crucial role in mitigating heat stress by effectively shielding surfaces from solar radiation. The integration of parametric design and computational optimization techniques enhances the shading design process by generating a wide range of alternative solutions.

Research limitations/implications

While conducting this research, it is important to acknowledge certain limitations that may affect the generalizability and scope of the findings. One significant limitation lies in the use of the shade audit method as a tool to prioritize zones for shading. Although the shade audit approach offers practical benefits for designers compared to using questionnaires, it may have its own inherent biases or may not capture the full complexity of human preferences and needs.

Originality/value

Few studies have focused on optimizing the type and location of devices that shade outdoor spaces. As a result, there is no consensus on the workflow that should regulate the design of outdoor shading installations in terms of microclimate and human thermal comfort, therefore testing parametric shading scenarios for open spaces between office buildings to increase the benefit of the outer environment is very important. The study synthesizes OTC strategies by filling the research gap through the implementation of a proper workflow that utilizes parametric thermal comfort.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 23 April 2024

Jiwon Chung, Hyunbin Won, Hannah Lee, Soah Park, Hyewon Ahn, Suhyun Pyeon, Jeong Eun Yoon and Sumin Koo

The objective of this study was to develop wearable suit platforms with various anchoring structure designs with the intention of improving wearability and enhancing user…

Abstract

Purpose

The objective of this study was to develop wearable suit platforms with various anchoring structure designs with the intention of improving wearability and enhancing user satisfaction.

Design/methodology/approach

This study selected fabrics and materials for the suit platform through material performance tests. Two anchoring structure designs, 11-type and X-type are compared with regular clothing under control conditions. To evaluate the comfort level of the wearable suit platform, a satisfaction survey and electroencephalogram (EEG) measurements are conducted to triangulate the findings.

Findings

The 11-type exhibited higher values in comfort indicators such as α, θ, α/High-β and lower values in concentration or stress indicators such as β, ϒ, sensorimotor rhythm (SMR)+Mid-β/θ, and a spectral edge frequency of 95% compared to the X-type while walking. The 11-type offers greater comfort and satisfaction compared to the X-type when lifting based on the EEG measurements and the participants survey.

Originality/value

It is recommended to implement the 11-type when designing wearable suit platforms. These findings offer essential data on wearability, which can guide the development of soft wearable robots.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 1000