Search results

1 – 10 of over 1000
Article
Publication date: 1 September 2004

Marija Cundeva, Ljupco Arsov and Goga Cvetkovski

The combined current‐voltage instrument transformer (CCVIT) is a complex non‐linear electromagnetic system with increased voltage, current and phase displacement errors. Genetic…

Abstract

The combined current‐voltage instrument transformer (CCVIT) is a complex non‐linear electromagnetic system with increased voltage, current and phase displacement errors. Genetic algorithm (GA) coupled with finite element method (FEM‐3D) is applied for CCVIT optimal design. The optimal design objective function is the metrological parameters minimum. The magnetic field analysis made by FEM‐3D enables exact estimation of the four CCVIT windings leakage reactances. The initial CCVIT design is made according to analytical transformer theory. The FEM‐3D results are a basis for the further GA optimal design. Compares the initial and GA optimal output CCVIT parameters. The GA coupled with FEM‐3D derives metrologically positive design results, which leads to higher CCVIT accuracy class.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 September 2012

Elzbieta Lesniewska and Bogdan Tulodziecki

The purpose of this paper is to consider a constructional solution of the combined instrument transformer: constructed so that the voltage part is a column transformer, which…

Abstract

Purpose

The purpose of this paper is to consider a constructional solution of the combined instrument transformer: constructed so that the voltage part is a column transformer, which means that the magnetic circuit of it is open and situated into a composite insulator. The aim of this research was to achieve optimal configuration of open magnetic circuit of the column voltage transformer.

Design/methodology/approach

The authors made analyses of electromagnetic field distribution and computed the voltage error and phase displacement for many different cases of magnetic circuits of the column voltage transformers. The analyses of the electromagnetic field distribution and computations were carried out using the 3D field‐circuit method based on the finite‐element numerical method. The results were compared with tests of a real‐life model.

Findings

The result of research is the selection of the best constructional version of the column voltage transformer; the research also gives some guidelines for design and manufacture of this construction of combined transformers.

Originality/value

The paper is meant for constructors of instrument transformers and presents results of research into new constructional solutions of combined transformer.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 1992

J. Turowskl, M. Kope&cacute and M. Turowski

At the ISEF'89 Symposium in Lodz an application of the fast reluctance network method and the computer program RNM‐3D for analysis of leakage fields and combined 3‐D screens of…

Abstract

At the ISEF'89 Symposium in Lodz an application of the fast reluctance network method and the computer program RNM‐3D for analysis of leakage fields and combined 3‐D screens of tank was presented. Now, similar effective and fast computation of stray losses in such a structure has been performed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 11 no. 1
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 28 December 2023

Ankang Ji, Xiaolong Xue, Limao Zhang, Xiaowei Luo and Qingpeng Man

Crack detection of pavement is a critical task in the periodic survey. Efficient, effective and consistent tracking of the road conditions by identifying and locating crack…

Abstract

Purpose

Crack detection of pavement is a critical task in the periodic survey. Efficient, effective and consistent tracking of the road conditions by identifying and locating crack contributes to establishing an appropriate road maintenance and repair strategy from the promptly informed managers but still remaining a significant challenge. This research seeks to propose practical solutions for targeting the automatic crack detection from images with efficient productivity and cost-effectiveness, thereby improving the pavement performance.

Design/methodology/approach

This research applies a novel deep learning method named TransUnet for crack detection, which is structured based on Transformer, combined with convolutional neural networks as encoder by leveraging a global self-attention mechanism to better extract features for enhancing automatic identification. Afterward, the detected cracks are used to quantify morphological features from five indicators, such as length, mean width, maximum width, area and ratio. Those analyses can provide valuable information for engineers to assess the pavement condition with efficient productivity.

Findings

In the training process, the TransUnet is fed by a crack dataset generated by the data augmentation with a resolution of 224 × 224 pixels. Subsequently, a test set containing 80 new images is used for crack detection task based on the best selected TransUnet with a learning rate of 0.01 and a batch size of 1, achieving an accuracy of 0.8927, a precision of 0.8813, a recall of 0.8904, an F1-measure and dice of 0.8813, and a Mean Intersection over Union of 0.8082, respectively. Comparisons with several state-of-the-art methods indicate that the developed approach in this research outperforms with greater efficiency and higher reliability.

Originality/value

The developed approach combines TransUnet with an integrated quantification algorithm for crack detection and quantification, performing excellently in terms of comparisons and evaluation metrics, which can provide solutions with potentially serving as the basis for an automated, cost-effective pavement condition assessment scheme.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 June 2023

Zimou Tang, Min Yang, Jianxiong Xiao, Zheng Shen, Liming Tang and Jibin Wang

This paper aims to present an engineering computational method for fatigue life evaluation of welded structures on large-scale equipment under random vibration load.

Abstract

Purpose

This paper aims to present an engineering computational method for fatigue life evaluation of welded structures on large-scale equipment under random vibration load.

Design/methodology/approach

Based on a case study of the traction transformers, virtual fatigue test (VFT) was proposed via numerical simulation approach. Static analysis was conducted to identify the risky zone and then dynamic response of the risky welds under random vibration load was calculated based on frequency-domain structural stress method (FDSSM) theory, life distribution and associated survivability at various locations of the structure were obtained. Structural modification was finally performed according to the evaluation results. Moreover, experimental test was carried out and compared with the virtual test result.

Findings

By applying the virtual test, fatigue life of the complex welded structures on large-scale equipment can be accurately and efficiently obtained considering dynamic effect under random vibration load. Meanwhile, risky welds can be directly determined and targeted modification scheme can be accordingly concluded. Validity of the VFT result was proved by comparing with the experimental test.

Originality/value

The proposed method can help obtain equivalent structural stress and fatigue life distribution of the welded structure at any position with various survivability and make quantitative evaluation on the life-extending effect of the structural modification. This method shows significant cost and efficiency advantages over experimental test during design stage of the large-scale structures in numerous manufacturing industries.

Case study
Publication date: 1 May 2007

Mikael Sondergaard and William Naumes

The ABB (A) case describes the situation leading up to a decision that has to be made concerning closing a manufacturing subsidiary of ABB and moving its operations to Thailand…

Abstract

The ABB (A) case describes the situation leading up to a decision that has to be made concerning closing a manufacturing subsidiary of ABB and moving its operations to Thailand. The Plant/subsidiary manager is placed in a conflict position regarding this decision due to the matrix form of management structure employed by the parent ABB. His direct line manager in charge of the global product line wants the move to take place. He has the support of his supervisor, who sits on the Executive Committee of the parent company. The ABB Country Manager for Denmark wants the plant to stay where it is. The subsidiary manager also reports to him, as part of the matrix structure. The subsidiary manager has recently been promoted to his new position, with the support of the Country Manager. The previous subsidiary manager had been promoted to head up a larger, Danish subsidiary of ABB. The previous year, the Country Manager and the previous subsidiary manager had managed to over rule the same request, in no small part, due to their connections within ABB as well as within Denmark. The new subsidiary manager needs to make a recommendation as to what should be done. The ABB Transformers (A) case can be used separately, or in conjunction with the (B) case.

The (B) case follows up on the (A) case. The decision was made to leave the plant in Denmark. It was revisited one year later, and the subsidiary manager is in even more of a quandary. The former Country Manager has been promoted to the Executive Committee of ABB. At a meeting of the new Country manager (not previously from within ABB), the Product Manager, his supervisor from the Executive Committee, the former Country Manager, and the subsidiary manager, the discussion is primarily between the new Country Manager and the Product Supervising Executive Committee Member, who has also been given added responsibility for all of Asia and the Pacific region. The former Country Manager, now responsible for European operations, remains quiet during the discussions. He later notes that this is a relatively small decision in the context of European operations. The subsidiary manager still needs to make a decision, but is now unsure of what has happened during the past year to allow this issue to be raised for the third time. The (B) case can be used to demonstrate how politics, promotions, and transfers can radically alter the environment within the context of a strategic decision. The focus is now on organization culture and power, and on the problems of operating within a matrix structure. The (B) case should be used in combination with the (A) case.

Details

The CASE Journal, vol. 3 no. 2
Type: Case Study
ISSN: 1544-9106

Article
Publication date: 13 November 2007

Okan Ozgonenel, David W.P. Thomas and Christos Christopoulos

The purpose of this paper is to describe a technique for modeling transformer internal faults using transmission line modeling (TLM) method. In this technique, a model for…

Abstract

Purpose

The purpose of this paper is to describe a technique for modeling transformer internal faults using transmission line modeling (TLM) method. In this technique, a model for simulating a two winding single phase transformer is modified to be suitable for simulating an internal fault in both windings.

Design/methodology/approach

TLM technique is mainly used for modeling transformer internal faults. This was first developed in early 1970s for modeling two‐dimensional field problems. Since, then, it has been extended to cover three dimensional problems and circuit simulations. This technique helps to solve integro‐differential equations of the analyzed circuit. TLM simulations of a single phase transformer are compared to a custom built transformer in laboratory environment.

Findings

It has been concluded from the real time studies that if an internal fault occurs on the primary or secondary winding, the primary current will increase a bit and secondary current does not change much. However, a very big circulating current flows in the shorted turns. This phenomenon requires a detailed modeling aspect in TLM simulations. Therefore, a detailed inductance calculation including leakages is included in the simulations. This is a very important point in testing and evaluating protective relays. Since, the remnant flux in the transformer core is unknown at the beginning of the TLM simulation, all TLM initial conditions are accepted as zero.

Research limitations/implications

The modeling technique presented in this paper is based on a low frequency (up to a few kHz) model of the custom‐built transformer. A detailed capacitance model must be added to obtain a high‐frequency model of the transformer. A detailed arc model, aging problem of the windings will be applied to model with TLM + finite element method.

Originality/value

Using TLM technique for dynamical modeling of transformer internal faults is the main contribution. This is an extended version of an earlier referenced paper of the authors and includes inductance calculation, leakages calculation, and BH curve simulation while the referenced paper only includes piecewise linear inductance values. This modeling approach may help power engineers and power system experts understand the behavior of the transformer under internal faults.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 November 2008

Lieven Degroote, Lieven Vandevelde, Bert Renders and Johan Gyselinck

The aim is to develop a nonlinear transformer model to achieve an accurate model to obtain the frequency components of the magnetizing current based on the harmonic voltages at…

Abstract

Purpose

The aim is to develop a nonlinear transformer model to achieve an accurate model to obtain the frequency components of the magnetizing current based on the harmonic voltages at the primary and secondary side. So, it can easily be implemented in a harmonic load‐flow program.

Design/methodology/approach

The transformer model is based on the harmonic balance method. The electric and magnetic equations of the transformer are derived from the electric and magnetic equivalent circuits.

Findings

The transformer model can be easily implemented in a harmonic load‐flow program. The accuracy of the model has been shown by comparing it with a finite element simulation. The transformer model can be used with asymmetrical supply voltages, because different saturation levels of the phases can occur. There is a coupling between the phases which can be concluded out of the asymmetrical currents in the transformer under symmetrical supply voltages.

Research limitations/implications

The transformer model does not consider the iron losses and the interharmonics. In future work the transformer model will be used to study the harmonic losses in distribution networks, so the transformer losses due to these harmonics have to be considered. This can be achieved with a postcalculation process where the magnetic flux density is used to calculate the eddy current losses and the magnetic field intensity will be applied in a static Preisach model to quantify the hysteresis losses.

Practical implications

The model can be used in a harmonic load‐flow program in order to obtain more accurate simulations for the power system analysis and design.

Originality/value

The model presented in this paper is more detailed than similar papers found in literature (saturation of the yokes, coupling between the phases, interaction between different harmonics) and still it takes a brief simulation time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2006

Kazimierz Zakrzewski, Bronisław Tomczuk and Andrzej Waindok

To make easier and faster the designing of transformers using scale models.

Abstract

Purpose

To make easier and faster the designing of transformers using scale models.

Design/methodology/approach

The scale modeling in designing of transformers is included. Both computer and physical models of high leakage reactance (HLR) and 3‐phase (TP3C) transformers have been considered. The 3D field computations have been executed for the scaled models, and the results were recalculated to the full‐scaled ones.

Findings

It is possible to calculate the scale coefficients for nonlinear models of transformers using finite element method (FEM) software. Obtained coefficients are useful in the designing process. Measurements confirm correctness of the scaling laws.

Research limitations/implications

The calculations were done only for transformers and the eddy current was not taken into account.

Practical implications

Presented formulae for scale model calculation are very useful for designing of transformers by the engineers. It is possible to design a series of transformers. Only one physical model must be manufactured for experimental verification.

Originality/value

This paper offers an innovative approach to non‐linear scaled modelling of transformers using FEM.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000