Search results

1 – 10 of over 114000
Article
Publication date: 4 August 2021

Hassan Dahmardeh, Mahmood Ghanbari and Seyed Mehdi Rakhtala

The purpose of this paper is to develop a combined control (CC) technique based on the direct torque control (DTC) strategy and vector control (VC) method, to improve the overall…

Abstract

Purpose

The purpose of this paper is to develop a combined control (CC) technique based on the direct torque control (DTC) strategy and vector control (VC) method, to improve the overall performance of a three-phase induction machine (TPIM) drives.

Design/methodology/approach

The proposed control scheme includes a table-based DTC strategy in connection with a proportional-integral-sliding mode controller and pulse width modulation switching strategy. The control system has merits of DTC technique such as simple structure, less dependent on machine parameters, fast dynamic response and merits of VC technique such as high accuracy and constant switching frequency.

Findings

To validate the effectiveness of the proposed control system, simulation and experimental studies are carried out for a 0.75 kW TPIM in different operating conditions. The achieved results show the superiority of the proposed method in terms of fast dynamics and simple structure compared to the VC strategy and low speed and torque ripples and constant switching frequency compared to the DTC method.

Originality/value

Compared to the conventional CC strategies, the control law of the proposed method is based on DTC theory and modulation is established based on VC. In other words, the variable switching frequency which is one of the main disadvantages of the conventional CC strategies is rectified using the proposed CC scheme.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 June 2023

Peipei Wang, Peter Fenn and Kun Wang

This paper aims to devise a case-controlled method combined with Bradford Hill criteria for causal inference of contractual disputes in construction projects. It is a genuine…

Abstract

Purpose

This paper aims to devise a case-controlled method combined with Bradford Hill criteria for causal inference of contractual disputes in construction projects. It is a genuine attempt in a systematic method from research design to execution for causal issues where only observational data is available.

Design/methodology/approach

The authors located insufficient top management support as the putative pathogen of construction disputes based on a literature review, an interview and Delphi surveys. A questionnaire survey was then conducted to collect case-controlled data to ensure comparability, in which for each disputed project put in the experimental group, the authors sought for a dispute-free project of similar characteristics. The incidence rates of insufficient top management support in the experimental and control groups were then examined by Bradford Hill criteria as an alternative to the test of intervention effect.

Findings

The association of insufficient top management support and construction disputes was tested to conform with the Bradford Hill criteria with case-controlled data where applicable and logical deduction where statistical tests were not applicable. With a clear, positive, reasonable and statistically significant association, while excluding methodological biases, confounding and chance, the authors reached a causal verdict of insufficient top management support causing contractual disputes.

Originality/value

This paper supports the validity of applying a case-controlled method combined with Bradford Hill criteria in investigating causal issues in project management, especially the verdict of causal inference based on empirical data. In addition, the located root cause of contractual disputes could inform project management personnel with reasoned strategies for dispute avoidance.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 10 April 2024

Rui Lin, Qiguan Wang, Xin Yang and Jianwen Huo

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This…

Abstract

Purpose

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This situation will seriously affect the stability of the spherical robot. Therefore, this paper aims to propose a control method based on backstepping and disturbance observers for oscillation suppression.

Design/methodology/approach

This paper analyzes the mechanism of oscillation. The oscillation model of the spherical robot is constructed and the relationship between the oscillation and the internal structure of the sphere is analyzed. Based on the oscillation model, the authors design the oscillation suppression control of the spherical robot using the backstepping method. At the same time, a disturbance observer is added to suppress the disturbance.

Findings

It is found that the control system based on backstepping and disturbance observer is simple and efficient for nonlinear models. Compared with the PID controller commonly used in engineering, this control method has a better control effect.

Practical implications

The proposed method can provide a reliable and effective stability scheme for spherical robots. The problem of instability in real motion is solved.

Originality/value

In this paper, the oscillation model of a spherical robot is innovatively constructed. Second, a new backstepping control method combined with a disturbance observer for the spherical robot is proposed to suppress the oscillation.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 March 2024

Min Zeng, Jianxing Xie, Zhitao Li, Qincheng Wei and Hui Yang

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter…

Abstract

Purpose

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter (EKF) to estimate the temperature of the thermocouple.

Design/methodology/approach

Temperature optimal control is combined with a closed-loop proportional integral differential (PID) control method based on an EKF. Different control methods for measuring the temperature of the thermode in terms of temperature control, error and antidisturbance are studied. A soldering process in a semi-industrial environment is performed. The proposed control method was applied to the soldering of flexible printed circuits and circuit boards. An infrared camera was used to measure the top-surface temperature.

Findings

The proposed method can not only estimate the soldering temperature but also eliminate the noise of the system. The performance of this methodology was exemplary, characterized by rapid convergence and negligible error margins. Compared with the conventional control, the temperature variability of the proposed control is significantly attenuated.

Originality/value

An EKF was designed to estimate the temperature of the thermocouple during hot-bar soldering. Using the EKF and PID controller, the nonlinear properties of the system could be effectively overcome and the effects of disturbances and system noise could be decreased. The proposed method significantly enhanced the temperature control performance of hot-bar soldering, effectively suppressing overshoot and shortening the adjustment time, thereby achieving precise temperature control of the controlled object.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 25 November 2021

Rui Yu and Hua Zhou

Trajectory tracking is an important issue to underactuated unmanned surface vehicles (USVs). However, parametric uncertainties and environmental disturbances bring great…

Abstract

Purpose

Trajectory tracking is an important issue to underactuated unmanned surface vehicles (USVs). However, parametric uncertainties and environmental disturbances bring great challenges to the precise trajectory tracking control of USVs. This paper aims to propose a robust trajectory tracking control algorithm with exponential stability for underactuated USVs with parametric uncertainties and unknown environmental disturbances.

Design/methodology/approach

In this method, the backstepping method and sliding mode control method are combined to ensure that the underactuated USV can track and maintain the desired trajectory. In addition, a modified switching-gain adaptation algorithm is adopted to enhance the robustness and reduce chattering. Besides, the global exponential stability of the closed-loop system is proved by Lyapunov’s direct method.

Findings

The proposed method in this paper offers a robust trajectory tracking solution to underactuated USVs and it is verified by simulations and experiments. Compared with the traditional proportion-integral-derivative method and several state-of-the-art algorithms, the proposed method has superior performance in simulation and experimental results.

Originality/value

This paper proposes a robust trajectory tracking control algorithm with exponential stability for underactuated USVs. The proposed method achieves exponential stability with better robustness and transient performance.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 17 December 2003

Norbert K Semmer, Simone Grebner and Achim Elfering

The preponderance of studies that rely on self-report for both independent (e.g. stressors) and dependent (e.g. well-being) variables is often deplored, as it creates problems of…

Abstract

The preponderance of studies that rely on self-report for both independent (e.g. stressors) and dependent (e.g. well-being) variables is often deplored, as it creates problems of common method variance, which may lead to inflated, or even spurious, correlations and predictions. It is sometimes suggested that alternative measures should yield more “objective” information on the phenomena under investigation. We discuss this issue with regard to: (a) observational measures of working conditions; (b) physiological measures of strain; and (c) event-based “self-observation” on a micro-level. We argue that these methods are not necessarily “objective.” Like self-report, they are influenced by a plethora of factors; and measurement artifacts can easily be produced. All this can make their interpretation quite difficult, and the conclusion that lack of convergence with self-report automatically invalidates self-report is not necessarily warranted. Especially with regard to physiological measures, one has to keep in mind that they refer to a different response level that follows its own laws and is only loosely coupled with psychological responses. Therefore, replacement is not a promising way to get more reliable estimates of stressor-strain relationships. We argue instead that each method contains both substantive and error variance, and that a combination of various methods seems more auspicious. After discussing advantages and pitfalls of observational, physiological, and self-observational measures, respectively, we report empirical examples from our own research on each of these methods, which are meant to illustrate both the advantages and the problems associated with them. They strengthen the overall conclusion that there is no “substitute” for self-report (which often is necessary to be able to interpret data from other methods, most notably physiological ones). They also illustrate that collecting such data is quite cumbersome, and that a number of conditions have to be carefully considered before using them, and we report some problems we encountered in this research. Altogether, we conclude that self-report measures, if carefully constructed, are better than their reputation, but that the optimal way is to complement them with other measures.

Details

Emotional and Physiological Processes and Positive Intervention Strategies
Type: Book
ISBN: 978-1-84950-238-2

Article
Publication date: 5 April 2021

Nigar Ahmed, Ajeet kumar Bhatia and Syed Awais Ali Shah

The aim of this research is to design a robust active disturbance attenuation control (RADAC) technique combined with an extended high gain observer (EHGO) and low pass filter…

Abstract

Purpose

The aim of this research is to design a robust active disturbance attenuation control (RADAC) technique combined with an extended high gain observer (EHGO) and low pass filter (LPF).

Design/methodology/approach

For designing a RADAC technique, the sliding mode control (SMC) method is used. Since the standard method of SMC exhibits a chattering phenomenon in the controller, a multilayer sliding mode surface is designed for avoiding the chattering. In addition, to attenuate the unwanted uncertainties and disturbances (UUDs), the techniques of EHGO and LPF are deployed. Besides acting as a patch for disturbance attenuation, the EHGO design estimates the state variables. To investigate the stability and effectiveness of the designed control algorithm, the stability analysis followed by the simulation study is presented.

Findings

The major findings include the design of a chattering-free RADAC controller based on the multilayer sliding mode surface. Furthermore, a criterion of integrating the LPF scheme within the EHGO scheme is also developed to attenuate matched and mismatched UUDs.

Practical implications

In practice, the quadrotor flight is opposed by different kinds of the UUDs. And, the model of the quadrotor is a highly nonlinear underactuated model. Thus, the dynamics of the quadrotor model become more complex and uncertain due to the additional UUDs. Hence, it is necessary to design a robust disturbance attenuation technique with the ability to estimate the state variables and attenuate the UUDs and also achieve the desired control objectives.

Originality/value

Designing control methods to attenuate the disturbances while assuming that the state variables are known is a common practice. However, investigating the uncertain plants with unknown states along with the disturbances is rarely taken in consideration for the control design. Hence, this paper presents a control algorithm to address the issues of the UUDs as well as investigate a criterion to reduce the chattering incurred in the controller due to the standard SMC algorithm.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 29 March 2021

Nigar Ahmed, Abid Raza and Rameez Khan

The aim of this paper is to design a nonlinear disturbance observer-based control (DOBC) method obtained by patching a control method developed using a robust adaptive technique…

Abstract

Purpose

The aim of this paper is to design a nonlinear disturbance observer-based control (DOBC) method obtained by patching a control method developed using a robust adaptive technique and a DO.

Design/methodology/approach

For designing a DOBC, initially a class of nonlinear system is considered with an external disturbance. First, a DO is designed to estimate the external disturbances. This estimate is combined with the controller to reject the disturbances and obtain the desired control objective. For designing a controller, the robust sliding mode control theory is used. Furthermore, instead of using a constant switching gain, an adaptive gain tuning criterion is designed using Lyapunov candidate function. To investigate the stability and effectiveness of the developed DOBC, stability analysis and simulation study are presented.

Findings

The major findings of this paper include the criteria of designing the robust adaptive control parameters and investigating the disturbance rejection when robust adaptive control based DOBC is developed.

Practical implications

In practice, the flight of quadrotor is affected by different kind of external disturbances, thus leading to the change in dynamics. Hence, it is necessary to design DOBCs based on robust adaptive controllers such that the quadrotor model adapts to the change in dynamics, as well as nullify the effect of disturbances.

Originality/value

Designing DOBCs based on robust control method is a common practice; however, the robust adaptive control method is rarely developed. This paper contributes in the domain of DOBC based on robust adaptive control methods such that the behavior of controller varies with the change in dynamics occurring due to external disturbances.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 August 2021

Nigar Ahmed and Mou Chen

The aim of this research paper is to design a disturbance observer (DO)-based robust adaptive tracking control of uncertain nonlinear system subject to unknown nonlinear…

Abstract

Purpose

The aim of this research paper is to design a disturbance observer (DO)-based robust adaptive tracking control of uncertain nonlinear system subject to unknown nonlinear disturbance.

Design/methodology/approach

To achieve desired control objectives, i.e. nonlinear trajectory tracking and disturbance attenuation, firstly, a control scheme is designed based on the adaptive criteria integrated in sliding mode control (SMC). In the second step, the disturbance estimation criterion is designed followed by patching with the controller obtained in the first step. Following the control development, using the Lyapunov candidate function, the stability criterion is ensured by designing appropriate adaptive gains.

Findings

In this paper, a robust adaptive nonlinear tracking method is presented. The findings includes the design of adaptive gains for the control parameters involved in the robust SMC technique, i.e. adaptive criterion is designed for the switching gain as well as for the gain used in sliding mode surface. Furthermore, a disturbance estimation criterion is developed to attenuate nonlinear disturbances with variable frequency and magnitude. Finally, the disturbance estimation scheme is combined with the control technique to obtain DO-based control (DOBC) algorithm.

Practical implications

Sliding mode control is a powerful robust control method. And, combining it with the DO achieves the control objectives of plants subject to disturbances and uncertainties. However, usually the uncertainties and disturbances are unknown and time varying. Thus, during practical implementation, designing the standard SMC is a challenging task due to the constant gains involved in the control design. Hence, it is important to have a criterion which adapts to the varying dynamics of plants due to the uncertainties and disturbances for achieving practical implementation of the control system.

Originality/value

Sliding mode control has been widely used for achieving the desired control objectives and robustness in the close-loop nonlinear systems. Besides, the SMC technique has been combined with the DOs as well. However, mostly the ideal conditions were considered during these developments, which required the control gains to be designed simply by manual tuning appropriately. However, by considering the real-time dynamics, uncertainties and disturbances, the constant control gain criteria can fail. Furthermore, due to external and internal disturbances, the model plant can vary with time. Thus, it is important to design the adaptive criteria for the control gains in DOBC schemes.

Details

Assembly Automation, vol. 41 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 November 2016

Diogo Tenório Cintra, Ramiro Brito Willmersdorf, Paulo Roberto Maciel Lyra and William Wagner Matos Lira

The purpose of this paper is to present a methodology of hybrid parallelization applied to the discrete element method that combines message-passing interface and OpenMP to…

Abstract

Purpose

The purpose of this paper is to present a methodology of hybrid parallelization applied to the discrete element method that combines message-passing interface and OpenMP to improve computational performance. The scheme is based on mapping procedures based on Hilbert space-filling curves (HSFC).

Design/methodology/approach

The methodology uses domain decomposition strategies to distribute the computation of large-scale models in a cluster. It also partitions the workload of each subdomain among threads. This additional procedure aims to reach higher computational performance by adjusting the usage of message-passing artefacts and threads. The main objective is to reduce the communication among processes. The work division by threads employs HSFC in order to improve data locality and to avoid related overheads. Numerical simulations presented in this work permit to evaluate the proposed method in terms of parallel performance for models that contain up to 3.2 million particles.

Findings

Distinct partitioning algorithms were used in order to evaluate the local decomposition scheme, including the recursive coordinate bisection method and a topological scheme based on METIS. The results show that the hybrid implementations reach better computational performance than those based on message passing only, including a good control of load balancing among threads. Case studies present good scalability and parallel efficiencies.

Originality/value

The proposed approach defines a configurable execution environment for numerical models and introduces a combined scheme that improves data locality and iterative workload balancing.

Details

Engineering Computations, vol. 33 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 114000