Search results

1 – 10 of 19
Article
Publication date: 8 December 2023

Han Sun, Song Tang, Xiaozhi Qi, Zhiyuan Ma and Jianxin Gao

This study aims to introduce a novel noise filter module designed for LiDAR simultaneous localization and mapping (SLAM) systems. The primary objective is to enhance pose…

Abstract

Purpose

This study aims to introduce a novel noise filter module designed for LiDAR simultaneous localization and mapping (SLAM) systems. The primary objective is to enhance pose estimation accuracy and improve the overall system performance in outdoor environments.

Design/methodology/approach

Distinct from traditional approaches, MCFilter emphasizes enhancing point cloud data quality at the pixel level. This framework hinges on two primary elements. First, the D-Tracker, a tracking algorithm, is grounded on multiresolution three-dimensional (3D) descriptors and adeptly maintains a balance between precision and efficiency. Second, the R-Filter introduces a pixel-level attribute named motion-correlation, which effectively identifies and removes dynamic points. Furthermore, designed as a modular component, MCFilter ensures seamless integration into existing LiDAR SLAM systems.

Findings

Based on rigorous testing with public data sets and real-world conditions, the MCFilter reported an increase in average accuracy of 12.39% and reduced processing time by 24.18%. These outcomes emphasize the method’s effectiveness in refining the performance of current LiDAR SLAM systems.

Originality/value

In this study, the authors present a novel 3D descriptor tracker designed for consistent feature point matching across successive frames. The authors also propose an innovative attribute to detect and eliminate noise points. Experimental results demonstrate that integrating this method into existing LiDAR SLAM systems yields state-of-the-art performance.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 April 2024

Zeyang Zhou and Jun Huang

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Abstract

Purpose

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Design/methodology/approach

The aircraft model with delta wing, V-shaped tail and blended wing body is designed, and high-precision unstructured grid technology is used to deal with the surface of air brake and fuselage. The calculation method based on multiple tracking and dynamic scattering is presented to calculate RCS.

Findings

The fuselage has a low scattering level, and the opening air brake will bring obvious dynamic RCS effects to itself and the whole machine. The average indicator of air brake RCS can be lower than –0.6 dBm2 under the tail azimuth, while that of forward and lateral direction is lower. The mean RCS of fuselage is obviously higher than that of air brake, while the deflected air brake and its cabin can still provide strong scattering sources at some azimuths. When the air brake is opening, the change amplitude of the aircraft forward RCS can exceed 19.81 dBm2.

Practical implications

This research has practical significance for the dynamic electromagnetic scattering analysis and stealth design of the air brake.

Originality/value

The calculation method for aircraft RCS considering air brake dynamic deflection has been established.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 June 2021

Ambica Ghai, Pradeep Kumar and Samrat Gupta

Web users rely heavily on online content make decisions without assessing the veracity of the content. The online content comprising text, image, video or audio may be tampered…

1153

Abstract

Purpose

Web users rely heavily on online content make decisions without assessing the veracity of the content. The online content comprising text, image, video or audio may be tampered with to influence public opinion. Since the consumers of online information (misinformation) tend to trust the content when the image(s) supplement the text, image manipulation software is increasingly being used to forge the images. To address the crucial problem of image manipulation, this study focusses on developing a deep-learning-based image forgery detection framework.

Design/methodology/approach

The proposed deep-learning-based framework aims to detect images forged using copy-move and splicing techniques. The image transformation technique aids the identification of relevant features for the network to train effectively. After that, the pre-trained customized convolutional neural network is used to train on the public benchmark datasets, and the performance is evaluated on the test dataset using various parameters.

Findings

The comparative analysis of image transformation techniques and experiments conducted on benchmark datasets from a variety of socio-cultural domains establishes the effectiveness and viability of the proposed framework. These findings affirm the potential applicability of proposed framework in real-time image forgery detection.

Research limitations/implications

This study bears implications for several important aspects of research on image forgery detection. First this research adds to recent discussion on feature extraction and learning for image forgery detection. While prior research on image forgery detection, hand-crafted the features, the proposed solution contributes to stream of literature that automatically learns the features and classify the images. Second, this research contributes to ongoing effort in curtailing the spread of misinformation using images. The extant literature on spread of misinformation has prominently focussed on textual data shared over social media platforms. The study addresses the call for greater emphasis on the development of robust image transformation techniques.

Practical implications

This study carries important practical implications for various domains such as forensic sciences, media and journalism where image data is increasingly being used to make inferences. The integration of image forgery detection tools can be helpful in determining the credibility of the article or post before it is shared over the Internet. The content shared over the Internet by the users has become an important component of news reporting. The framework proposed in this paper can be further extended and trained on more annotated real-world data so as to function as a tool for fact-checkers.

Social implications

In the current scenario wherein most of the image forgery detection studies attempt to assess whether the image is real or forged in an offline mode, it is crucial to identify any trending or potential forged image as early as possible. By learning from historical data, the proposed framework can aid in early prediction of forged images to detect the newly emerging forged images even before they occur. In summary, the proposed framework has a potential to mitigate physical spreading and psychological impact of forged images on social media.

Originality/value

This study focusses on copy-move and splicing techniques while integrating transfer learning concepts to classify forged images with high accuracy. The synergistic use of hitherto little explored image transformation techniques and customized convolutional neural network helps design a robust image forgery detection framework. Experiments and findings establish that the proposed framework accurately classifies forged images, thus mitigating the negative socio-cultural spread of misinformation.

Details

Information Technology & People, vol. 37 no. 2
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 26 March 2024

Achuthy Kottangal and Deepika Purohit

This study aims to analyze how conventional Bedouin weaving techniques have changed through the history of Israel, offering knowledge on the craft’s cultural relevance and…

Abstract

Purpose

This study aims to analyze how conventional Bedouin weaving techniques have changed through the history of Israel, offering knowledge on the craft’s cultural relevance and historical development among the Bedouin people and how their weaving and embroidery differ based on the three main geographic characteristics. It tries to comprehend the causes of the transition from organic to synthetic materials and the part played by the Lakiya Negev Bedouin Weaving women’s cooperative in maintaining this legacy.

Design/methodology/approach

The main goal of this study is to trace the emergence of Bedouin weaving traditions in the Negev Desert using a qualitative research methodology that combines historical analysis and ethnographic investigation. A thorough grasp of the subject’s significance is provided through the data gathering, which consists of interviews, archival research and field observations.

Findings

Through the years, Bedouin weaving techniques have significantly shifted away from using traditional organic materials in favor of synthetic replacements, according to the research. It emphasizes the crucial part played by the Lakiya Negev Bedouin Weaving women’s organization in safeguarding this traditional legacy and giving Bedouin women access to economic prospects.

Research limitations/implications

The limitation of the study includes its emphasis on the Negev region and the Israeli Bedouin community, which may not accurately reflect all Bedouin weaving techniques. Greater regional settings may be explored in future studies.

Practical implications

The investigation emphasizes the value of investing in initiatives for cultural preservation and the empowerment of underprivileged groups through economic possibilities.

Social implications

By preserving ancient weaving techniques, this research enables Bedouin women in the Negev Desert to maintain their cultural identity and socioeconomic well-being.

Originality/value

By emphasizing the socio-cultural dimensions and the organization’s role in preserving traditional craftsmanship in a changing socio-economic environment, this research presents a unique investigation of the evolution of Bedouin weaving techniques in Israel.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 8 April 2024

Faryal Yousaf, Shabana Sajjad, Faiza Tauqeer, Tanveer Hussain, Shahnaz Khattak and Fatima Iftikhar

Quality assessment of textile products is of prime concern to intimately meet consumer demands. The dilemma faced by textile producers is to figure out the stability among quality…

Abstract

Purpose

Quality assessment of textile products is of prime concern to intimately meet consumer demands. The dilemma faced by textile producers is to figure out the stability among quality criteria and efficiently deal with target specifications. Hence, the basic devotion is to attain the optimum value product which entirely satisfies the views and perceptions of consumers. Selection of best fabric among several alternatives in the presence of contradictory measures is a disputing problem in multicriteria decision-making.

Design/methodology/approach

In the current study, the analytic hierarchy process (AHP) and preference ranking organization method for enrichment evaluation (PROMETHEE) are proficiently used to solve the problem in selection of branded woven shawls. AHP method verifies comparative weights of the criteria selection, while the ranking of fabric alternatives grounded on specific net-outranking flows is executed through PROMETHEE II method.

Findings

The collective AHP and PROMETHEE approaches are applied for the useful accomplishment of grading of branded shawls based on multicriteria weights, used for effective selection of fabric materials in the textile market.

Practical implications

In the apparel industry, fabric and garment manufacturers often rely on hit-and-trial methods, leading to significant wastage of valuable resources and time, in achieving the desirable fabric qualities. The implementation of the findings can assist apparel manufacturers in streamlining their fabric selection processes based on multiple criteria. By adopting this method, industry players can make informed decisions, ensuring a balance between quality standards and consumer expectations, thereby enhancing both product value and market competitiveness.

Originality/value

The methods of Visual PROMETHEE and AHP are assimilated to offer a complete method for the selection and grading of fabrics with reference to multiple selection criteria.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 6 February 2024

Julian Bucher, Klara Kager and Miriam Vock

The purpose of this paper is to systematically review the history and current state of lesson study (LS) in Germany. In particular, this paper describes the development of LS over…

Abstract

Purpose

The purpose of this paper is to systematically review the history and current state of lesson study (LS) in Germany. In particular, this paper describes the development of LS over time and its stakeholders.

Design/methodology/approach

Conducting a systematic literature review, we searched three scientific databases and Google Scholar, examined 806 results and included 50 articles in our final sample, which we analyzed systematically.

Findings

The spread of LS in Germany can be divided into three phases, characterized by their own LS projects as well as their own ways of understanding LS. Although interest in LS has increased significantly in recent years, it is only present at a small number of schools and universities in Germany if compared internationally. Furthermore, this paper identifies the so-called learning activity curves as a tool frequently used for observation and reflection that appears to be unknown outside German-speaking countries.

Originality/value

This paper may act as an outline for countries without large-scale LS projects and with limited support from policymakers. The experience from Germany demonstrates the outcomes and challenges that can arise in such a situation and shows how unique LS features and proceedings have emerged.

Details

International Journal for Lesson & Learning Studies, vol. 13 no. 5
Type: Research Article
ISSN: 2046-8253

Keywords

Open Access
Article
Publication date: 8 December 2023

Flaviana Calignano, Alessandro Bove, Vincenza Mercurio and Giovanni Marchiandi

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing…

454

Abstract

Purpose

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.

Design/methodology/approach

Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.

Findings

Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.

Originality/value

In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 September 2022

Johnny Kwok Wai Wong, Mojtaba Maghrebi, Alireza Ahmadian Fard Fini, Mohammad Amin Alizadeh Golestani, Mahdi Ahmadnia and Michael Er

Images taken from construction site interiors often suffer from low illumination and poor natural colors, which restrict their application for high-level site management purposes…

Abstract

Purpose

Images taken from construction site interiors often suffer from low illumination and poor natural colors, which restrict their application for high-level site management purposes. The state-of-the-art low-light image enhancement method provides promising image enhancement results. However, they generally require a longer execution time to complete the enhancement. This study aims to develop a refined image enhancement approach to improve execution efficiency and performance accuracy.

Design/methodology/approach

To develop the refined illumination enhancement algorithm named enhanced illumination quality (EIQ), a quadratic expression was first added to the initial illumination map. Subsequently, an adjusted weight matrix was added to improve the smoothness of the illumination map. A coordinated descent optimization algorithm was then applied to minimize the processing time. Gamma correction was also applied to further enhance the illumination map. Finally, a frame comparing and averaging method was used to identify interior site progress.

Findings

The proposed refined approach took around 4.36–4.52 s to achieve the expected results while outperforming the current low-light image enhancement method. EIQ demonstrated a lower lightness-order error and provided higher object resolution in enhanced images. EIQ also has a higher structural similarity index and peak-signal-to-noise ratio, which indicated better image reconstruction performance.

Originality/value

The proposed approach provides an alternative to shorten the execution time, improve equalization of the illumination map and provide a better image reconstruction. The approach could be applied to low-light video enhancement tasks and other dark or poor jobsite images for object detection processes.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 15 March 2024

Arzu Şen Kılıç, Can Ünal and Ziynet Ondogan

This study establishes the principles and process steps of a new basic trousers pattern using measurements obtained according to the rules of the anthropometric measurement…

Abstract

Purpose

This study establishes the principles and process steps of a new basic trousers pattern using measurements obtained according to the rules of the anthropometric measurement system. The newly developed pattern-making system in this study will be called the “Anthropometric Measurements Based Pattern Making System” (AnMePa). It is aimed at producing trousers that are more fitting to the body, thanks to this pattern-making system.

Design/methodology/approach

In this research, four pattern-making systems used in many parts of the world were compared with the “Anthropometric Measurements Based Pattern Making System” (AnMePa) with regard to the overall appearance and body fit of trousers prepared according to these systems. 10 virtual mannequins (VM) with different adult female body measurements were created, and trousers patterns were prepared for these mannequins. The trousers’ patterns were made and dressed on the mannequins in a 3D virtual dressing system. The body fit of the virtual garments was evaluated by five experts. The scores given by the experts were evaluated using the fuzzy logic method.

Findings

According to the results, it is seen that the new basic trousers pattern developed by utilizing the anthropometric measurement system, AnMePa, provides the best body fit among the basic trousers patterns created according to the other examined pattern-making systems. The combination of 3D virtual dressing and fuzzy logic in the evaluation of garment body fit is considered an innovative method for the future of fashion design and production.

Originality/value

In the developed AnMePa, unlike the existing pattern-making systems, values that can be associated with the body measurements of individuals in a way that could be suitable for each community were used instead of constant values in the pattern-making process. Furthermore, the integration of 3D virtual fitting and fuzzy logic in assessing garment fit is considered a pioneering approach with significant implications for the future landscape of fashion design and production.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 19