Search results

1 – 10 of 561
Article
Publication date: 20 October 2023

Yi Wu, Xiaohui Jia, Tiejun Li, Chao Xu and Jinyue Liu

This paper aims to use redundant manipulators to solve the challenge of collision avoidance in construction operations such as welding and painting.

Abstract

Purpose

This paper aims to use redundant manipulators to solve the challenge of collision avoidance in construction operations such as welding and painting.

Design/methodology/approach

In this paper, a null-space-based task-priority adjustment approach is developed to avoid collisions. The method establishes the relative position of the obstacle and the robot arm by defining the “link space,” and then the priority of the collision avoidance task and the end-effector task is adjusted according to the relative position by introducing the null space task conversion factors.

Findings

Numerical simulations demonstrate that the proposed method can realize collision-free maneuvers for redundant manipulators and guarantee the tracking precision of the end-effector task. The experimental results show that the method can avoid dynamic obstacles in redundant manipulator welding tasks.

Originality/value

A new formula for task priority adjustment for collision avoidance of redundant manipulators is proposed, and the original task tracking accuracy is guaranteed under the premise of safety.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 September 2023

Shuwen Sun, Chenyu Song, Bo Wang and Haiming Huang

The safety performance of cooperative robots is particularly important. This paper aims to study collision detection and response of cooperative robots, which meet the lightweight…

Abstract

Purpose

The safety performance of cooperative robots is particularly important. This paper aims to study collision detection and response of cooperative robots, which meet the lightweight requirements of cooperative robots and help to ensure the safety of humans and robots.

Design/methodology/approach

This paper proposes a collision detection, recognition and response method based on dynamic models. First, this paper identifies the dynamic model of the robot. Second, an external torque observer is established based on the model, and a dynamic threshold collision detection method is designed to reduce the interference of model uncertainty on collision detection. Finally, a collision position and direction estimation method is designed, and a robot collision response strategy is proposed to reduce the harm caused by collisions to humans.

Findings

Comparative experiments are conducted on static threshold and dynamic threshold collision detection, and the results showed that the static threshold only detected one collision while the dynamic threshold could detect all collisions. Conducting collision position and direction estimation and collision response experiments, and the results show that this method can determine the location and direction of collision occurrence, and enable the robot to achieve collision separation.

Originality/value

This paper designs a dynamic threshold collision detection method that does not require external sensors. Compared with static threshold collision detection methods, this method can significantly improve the sensitivity of collision detection. This paper also proposes a collision position direction estimation method and collision separation response strategy, which can enable robots to achieve post collision separation and improve the safety of cooperative robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 September 2023

Xunlei Shi, Qingyuan Wu, Jianjian Deng, Ken Chen and Jiwen Zhang

The purpose of this paper is to propose a strategy for the final assembly of helicopter fuselage with weak rigidity parts and mismatched jointing butt ends.

Abstract

Purpose

The purpose of this paper is to propose a strategy for the final assembly of helicopter fuselage with weak rigidity parts and mismatched jointing butt ends.

Design/methodology/approach

The strategy is based on path planning methods. Compared with traditional path planning methods, the configuration-space and collision detection in the method are different. The obstacles in the configuration-space are weakly rigid and allow continuous contact with the robot. The collision detection is based on interference magnitudes, and the result is divided into no collision, weak collision and strong collision. Only strong collision is unacceptable. Then a compliant jointing path planning algorithm based on RRT is designed, combined with some improvements in search efficiency.

Findings

A series of planning results show that the efficiency of this method is higher than original RRT under the same conditions. The effectiveness of the method is verified by a series of simulations and experiments on two sets of systems.

Originality/value

There are few reports on the automation technology of helicopter fuselage assembly. This paper analyzes the problem and provides a solution from the perspective of path planning. This method contains a new configuration-space and collision detection method adapted to this problem and could be intuitive for the jointing of other weakly rigid parts.

Details

Robotic Intelligence and Automation, vol. 43 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 21 July 2023

Alan Tapp, George Marian Ursachi and Dan Campsall

Critical social marketing can play a vital role in countering the consequences of behaviours toxified by commercial marketing. This paper aims to hypothesise that auto sector…

Abstract

Purpose

Critical social marketing can play a vital role in countering the consequences of behaviours toxified by commercial marketing. This paper aims to hypothesise that auto sector brand activities may be associated with riskier driving.

Design/methodology/approach

In this paper, the authors hypothesised that auto sector brand activities may be associated with riskier driving. UK collision data was examined, focusing on collisions that occurred because of an “injudicious action” (risky or aggressive driving manoeuvres) and analysing this data set by comparing the incidence of vehicle brands involved.

Findings

After allowing for other effects, a gradient graph illustrated differing associations between vehicle brands and collision rates.

Practical implications

A discussion was offered, adopting the position that if such a problem exists the solutions cannot be left to the sector itself, and that socially responsible interventions may be required. A number of social marketing strategies are proposed including regulatory support, “Truth Campaign” style exposure of commercial damage, and counter-marketing that promotes safe driver behaviour.

Originality/value

This work provides valuable empirical support to the concerns raised by previous workers about the possible effects of automotive sector advertising on driving behaviour. The paper offers a concise discussion of ways forward, concluding with the novel possibility of regulating individual brands as an alternative to sector-wide regulation.

Details

Journal of Social Marketing, vol. 13 no. 4
Type: Research Article
ISSN: 2042-6763

Keywords

Article
Publication date: 8 April 2024

Yimei Chen, Yixin Wang, Baoquan Li and Tohru Kamiya

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm…

Abstract

Purpose

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm BP-prediction and reciprocal velocity obstacle (PRVO) combines the BP neural network for velocity PRVO to accomplish dynamic collision avoidance.

Design/methodology/approach

This presented method exhibits innovation by anticipating ahead velocities using BP neural networks to reconstruct the velocity obstacle region; determining the optimized velocity corresponding to the robot’s scalable radius range from the error generated by the non-holonomic robot tracking the desired trajectory; and considering acceleration constraints, determining the set of multi-step reachable velocities of non-holonomic robot in the space of velocity variations.

Findings

The method is validated using three commonly used metrics of collision rate, travel time and average distance in a comparison between simulation experiments including multiple differential drive robots and physical experiments using the Turtkebot3 robot. The experimental results show that our method outperforms other RVO extension methods on the three metrics.

Originality/value

In this paper, the authors propose navigation algorithms capable of adaptively selecting the optimal speed for a multi-robot system to avoid robot collisions during dynamic crowded interactions.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 February 2024

Ravinder Singh

This paper aims to focus on solving the path optimization problem by modifying the probabilistic roadmap (PRM) technique as it suffers from the selection of the optimal number of…

Abstract

Purpose

This paper aims to focus on solving the path optimization problem by modifying the probabilistic roadmap (PRM) technique as it suffers from the selection of the optimal number of nodes and deploy in free space for reliable trajectory planning.

Design/methodology/approach

Traditional PRM is modified by developing a decision-making strategy for the selection of optimal nodes w.r.t. the complexity of the environment and deploying the optimal number of nodes outside the closed segment. Subsequently, the generated trajectory is made smoother by implementing the modified Bezier curve technique, which selects an optimal number of control points near the sharp turns for the reliable convergence of the trajectory that reduces the sum of the robot’s turning angles.

Findings

The proposed technique is compared with state-of-the-art techniques that show the reduction of computational load by 12.46%, the number of sharp turns by 100%, the number of collisions by 100% and increase the velocity parameter by 19.91%.

Originality/value

The proposed adaptive technique provides a better solution for autonomous navigation of unmanned ground vehicles, transportation, warehouse applications, etc.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 28 March 2023

Cengiz Deniz

The aim of this study is to create a robust and simple collision avoidance approach based on quaternion algebra for vision-based pick and place applications in manufacturing…

Abstract

Purpose

The aim of this study is to create a robust and simple collision avoidance approach based on quaternion algebra for vision-based pick and place applications in manufacturing industries, specifically for use with industrial robots and collaborative robots (cobots).

Design/methodology/approach

In this study, an approach based on quaternion algebra is developed to prevent any collision or breakdown during the movements of industrial robots or cobots in vision system included pick and place applications. The algorithm, integrated into the control system, checks for collisions before the robot moves its end effector to the target position during the process flow. In addition, a hand–eye calibration method is presented to easily calibrate the camera and define the geometric relationships between the camera and the robot coordinate systems.

Findings

This approach, specifically designed for vision-based robot/cobot applications, can be used by developers and robot integrator companies to significantly reduce application costs and the project timeline of the pick and place robotics system installation. Furthermore, the approach ensures a safe, robust and highly efficient application for robotics vision applications across all industries, making it an ideal solution for various industries.

Originality/value

The algorithm for this approach, which can be operated in a robot controller or a programmable logic controller, has been tested as real-time in vision-based robotics applications. It can be applied to both existing and new vision-based pick and place projects with industrial robots or collaborative robots with minimal effort, making it a cost-effective and efficient solution for various industries.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 December 2023

Qing Zhou, Yuanqing Liu, Xiaofeng Liu and Guoping Cai

In the post-capture stage, the tumbling target rotates the combined spacecraft system, and the detumbling operation performed by the space robot is required. To save the costly…

Abstract

Purpose

In the post-capture stage, the tumbling target rotates the combined spacecraft system, and the detumbling operation performed by the space robot is required. To save the costly onboard fuel of the space robot, this paper aims to present a novel post-capture detumbling strategy.

Design/methodology/approach

Actuated by the joint rotations of the manipulator, the combined system is driven from three-axis tumbling state to uniaxial rotation about its maximum principal axis. Only unidirectional thrust perpendicular to the axis is needed to slow down the uniaxial rotation, thus saving the thruster fuel. The optimization problem of the collision-free detumbling trajectory of the space robot is described, and it is optimized by the particle swarm optimization algorithm.

Findings

The numerical simulation results show that along the trajectory planned by the detumbling strategy, the maneuver of the manipulator can precisely drive the combined system to rotate around its maximum principal axis, and the final kinetic energy of the combined system is smaller than the initial. The unidirectional thrust and the lower kinetic energy can ensure the fuel-saving in the subsequent detumbling stage.

Originality/value

This paper presents a post-capture detumbling strategy to drive the combined system from three-axis tumbling state to uniaxial rotation about its maximum principal axis by redistributing the angular momentum of the parts of the combined system. The strategy reduces the thrust torque for detumbling to effectively save the thruster fuel.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 June 2023

Antonio Bacciaglia and Alessandro Ceruti

Timing constraints affect the manufacturing of traditional large-scale components through the material extrusion technique. Thus, researchers are exploring using many independent…

Abstract

Purpose

Timing constraints affect the manufacturing of traditional large-scale components through the material extrusion technique. Thus, researchers are exploring using many independent and collaborative heads that may work on the same part simultaneously while still producing an appealing final product. The purpose of this paper is to propose a simple and repeatable approach for toolpath planning for gantry-based n independent extrusion heads with effective collision avoidance management.

Design/methodology/approach

This research presents an original toolpath planner based on existing slicing software and the traditional structure of G-code files. While the computationally demanding component subdivision task is assigned to computer-aided design and slicing software to build a standard G-code, the proposed algorithm scans the conventional toolpath data file, quickly isolates the instructions of a single extruder and inserts brief pauses between the instructions if the non-priority extruder conflicts with the priority one.

Findings

The methodology is validated on two real-life industrial large-scale components using architectures with two and four extruders. The case studies demonstrate the method's effectiveness, reducing printing time considerably without affecting the part quality. A static priority strategy is implemented, where one extruder gets priority over the other using a cascade process. The results of this paper demonstrate that different priority strategies reflect on the printing efficiency by a factor equal to the number of extrusion heads.

Originality/value

To the best of the authors’ knowledge, this is the first study to produce an original methodology to efficiently plan the extrusion heads' trajectories for a collaborative material extrusion architecture.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 February 2023

Andro Rak, Luka Grbčić, Ante Sikirica and Lado Kranjčević

The purpose of this paper is the examination of fluid flow around NACA0012 airfoil, with the aim of the numerical validation between the experimental results in the wind tunnel…

Abstract

Purpose

The purpose of this paper is the examination of fluid flow around NACA0012 airfoil, with the aim of the numerical validation between the experimental results in the wind tunnel and the Lattice Boltzmann method (LBM) analysis, for the medium Reynolds number (Re = 191,000). The LBM–large Eddy simulation (LES) method described in this paper opens up opportunities for faster computational fluid dynamics (CFD) analysis, because of the LBM scalability on high performance computing architectures, more specifically general purpose graphics processing units (GPGPUs), pertaining at the same time the high resolution LES approach.

Design/methodology/approach

Process starts with data collection in open-circuit wind tunnel experiment. Furthermore, the pressure coefficient, as a comparative variable, has been used with varying angle of attack (2°, 4°, 6° and 8°) for both experiment and LBM analysis. To numerically reproduce the experimental results, the LBM coupled with the LES turbulence model, the generalized wall function (GWF) and the cumulant collision operator with D3Q27 velocity set has been used. Also, a mesh independence study has been provided to ensure result congruence.

Findings

The proposed LBM methodology is capable of highly accurate predictions when compared with experimental data. Besides, the special significance of this work is the possibility of experimental and CFD comparison for the same domain dimensions.

Originality/value

Considering the quality of results, root-mean-square error (RMSE) shows good correlations both for airfoil’s upper and lower surface. More precisely, maximal RMSE for the upper surface is 0.105, whereas 0.089 for the lower surface, regarding all angles of attack.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 561