Search results

1 – 10 of over 5000
Article
Publication date: 17 August 2015

Thomas M. Rice, Lara Troszak and Bryon G. Gustafson

Concerns about the risk of traffic collision injury to both police officers and bystanders are increasing as the use of in-vehicle technologies becoming widespread among…

906

Abstract

Purpose

Concerns about the risk of traffic collision injury to both police officers and bystanders are increasing as the use of in-vehicle technologies becoming widespread among agencies. This study used national and California data to characterize traffic collisions in which a police vehicle was involved. The paper aims to discuss these issues.

Design/methodology/approach

The authors used a California traffic collision database to retrospectively identify collisions that involved police vehicles for years 2007-2010. The authors summarized collision characteristics with descriptive methods and used log-binomial regression to estimate associations between personal and collision characteristics with officer culpability.

Findings

The authors identified 5,233 traffic collisions in California. In total, 10 percent of law enforcement vehicles were motorcycles. In all, 9 percent of cruisers struck a pedestrian or bicyclist, compared with only 2 percent of motorcycles. Compared with officers aged 50 or older, officers in younger age categories were progressively much more likely to have been culpable. Motorcycle officers were 33 percent less likely to be culpable for their collision involvements. Approximately 100 fatal collisions involving a law enforcement vehicle occur each year in the USA.

Originality/value

The findings from this study indicate that approximately 1,300 injury-producing traffic collisions occur each year in California that involve a law enforcement vehicle. The authors found that younger age, female sex, cruiser operation, traveling unbelted, and single-vehicle collision involvement were positively associated with officer culpability. Officer race and community population were not significantly associated with culpability. The occurrence of fatal collisions in the USA was stable over a 12-year period.

Details

Policing: An International Journal of Police Strategies & Management, vol. 38 no. 3
Type: Research Article
ISSN: 1363-951X

Keywords

Article
Publication date: 1 March 1998

G. Stylios and T.R. Wan

This paper presents a new technique for collision detection between fabric and fabric or fabric and body, applied on our physical‐based fabric drape model. The technique…

Abstract

This paper presents a new technique for collision detection between fabric and fabric or fabric and body, applied on our physical‐based fabric drape model. The technique can produce a realistic 3D virtual fashion show based on fabric mechanical properties and has the ability to handle the collision of clothing with an animated synthetic human. The collision technique appeared efficient and reliable when dealing with complex cases of fabric deformation. A full implementation of the drape model, collision detection with an animated human model is also described and discussed.

Details

International Journal of Clothing Science and Technology, vol. 10 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2005

Shujun Lu and Jae H. Chung

Aims to make an industrial robot work human‐friendly while coexisting with humans in a same working space, without any modification of the manipulator hardware as well as…

Abstract

Purpose

Aims to make an industrial robot work human‐friendly while coexisting with humans in a same working space, without any modification of the manipulator hardware as well as its motion controller.

Design/methodology/approach

Presents a weighted path planning approach based on collision detection for a robot sharing the same workspace with humans. Using a base and wrist force/torque sensors, a model‐based method is investigated to estimate the collision force and collision position on the manipulator; then a weighted path planning approach is developed to control the human‐robot interaction. Simulation experiments, with collisions between the manipulator and static objects and moving objects, are conducted to validate the efficacy of the method.

Findings

The experimental results illustrate the validity of the developed collision detection and planning scheme and make it possible for industrial robots to work safely around humans. The proposed weighted path planner (WPP) outperforms other three path planners.

Originality/value

Introduces the WPP based on collision detection. The wrist and base force/torque sensors configuration has the friction free benefit, and the developed method does not modify the existing designs of industrial robots. The contact force is well controlled under the human pain tolerance limit, through the modification of the desired path, and does not need torque control which is usually not available to industrial robots.

Details

Industrial Robot: An International Journal, vol. 32 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 June 2010

In Hwan Sul

The purpose of this paper is to develop a new and simple methodology for fabric collision detection and response.

Abstract

Purpose

The purpose of this paper is to develop a new and simple methodology for fabric collision detection and response.

Design/methodology/approach

A 3D triangle‐to‐triangle collision problem was converted to simple 2D point‐in‐triangle problem using pre‐computed 4×4 transformation matrices. The object space was partitioned using voxels to find easily collision pair triangles. k‐DOP was used to find inter‐pattern collisions.

Findings

Complex 3D collision detection problem is solved by simple matrix operations. Voxel‐based space partitioning and k‐DOP‐based hierarchical methods are successfully applied to garment simulation.

Originality/value

This paper shows that the collision matrix method can cover from triangle‐to‐point to triangle‐to‐triangle collision with mathematical validity and can be simply implemented in garment simulation.

Details

International Journal of Clothing Science and Technology, vol. 22 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Abstract

Details

The Handbook of Road Safety Measures
Type: Book
ISBN: 978-1-84855-250-0

Open Access
Article
Publication date: 10 March 2022

Chen Chai, Ziyao Zhou, Weiru Yin, David S. Hurwitz and Siyang Zhang

The presentation of in-vehicle warnings information at risky driving scenarios is aimed to improve the collision avoidance ability of drivers. Existing studies have found…

Abstract

Purpose

The presentation of in-vehicle warnings information at risky driving scenarios is aimed to improve the collision avoidance ability of drivers. Existing studies have found that driver’s collision avoidance performance is affected by both warning information and driver’s workload. However, whether moderation and mediation effects exist among warning information, driver’s cognition, behavior and risky avoidance performance is unclear.

Design/methodology/approach

This purpose of this study is to examine whether the warning information type modifies the relationship between the forward collision risk and collision avoidance behavior. A driving simulator experiment was conducted with waring and command information.

Findings

Results of 30 participants indicated that command information improves collision avoidance behavior more than notification warning under the forward collision risky driving scenario. The primary reason for this is that collision avoidance behavior can be negatively affected by the forward collision risk. At the same time, command information can weaken this negative effect. Moreover, improved collision avoidance behavior can be achieved through increasing drivers’ mental workload.

Practical implications

The proposed model provides a comprehensive understanding of the factors influencing collision avoidance behavior, thus contributing to improved in-vehicle information system design.

Originality/value

The significant moderation effects evoke the fact that information types and mental workloads are critical in improving drivers’ collision avoidance ability. Through further calibration with larger sample size, the proposed structural model can be used to predict the effect of in-vehicle warnings in different risky driving scenarios.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Abstract

Details

The Handbook of Road Safety Measures
Type: Book
ISBN: 978-1-84855-250-0

Article
Publication date: 11 January 2022

Weiliang Zhu, Zhaojun Pang, Jiyue Si and Zhonghua Du

This paper aims to study the encounter issues of the Tethered-Space Net Robot System (TSNRS) with non-target objects on orbit during the maneuver, including the collision

Abstract

Purpose

This paper aims to study the encounter issues of the Tethered-Space Net Robot System (TSNRS) with non-target objects on orbit during the maneuver, including the collision issues with small space debris and the obstacle avoidance from large obstacles.

Design/methodology/approach

For the collision of TSNRS with small debris, the available collision model of the tethered net and its limitation is discussed, and the collision detection method is improved. Then the dynamic response of TSNRS is studied and a closed-loop controller is designed. For the obstacle avoidance, the variable enveloping circle of the TSNRS has coupled with the artificial potential field (APF) method. In addition, the APF is improved with a local trajectory correction method to avoid the overbending segment of the trajectory.

Findings

The collision model coupled with the improved collision detection method solves the detection failure and speeds up calculation efficiency by 12 times. Collisions of TSNRS with small debris make the local thread stretch and deforms finally making the net a mess. The boundary of the disturbance is obtained by a series of collision tests, and the designed controller not only achieved the tracking control of the TSNRS but also suppressed the disturbance of the net.

Practical implications

This paper fills the gap in the research on the collision of the tethered net with small debris and makes the collision model more general and efficient by improving the collision detection method. And the coupled obstacle avoidance method makes the process of obstacle avoidance safer and smoother.

Originality/value

The work in this paper provides a reference for the on-orbit application of TSNRS in the active space debris removal mission.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 15 September 2021

Qun Lim, Yi Lim, Hafiz Muhammad, Dylan Wei Ming Tan and U-Xuan Tan

The purpose of this paper is to develop a proof-of-concept (POC) Forward Collision Warning (FWC) system for the motorcyclist, which determines a potential clash based on…

Abstract

Purpose

The purpose of this paper is to develop a proof-of-concept (POC) Forward Collision Warning (FWC) system for the motorcyclist, which determines a potential clash based on time-to-collision and trajectory of both the detected and ego vehicle (motorcycle).

Design/methodology/approach

This comes in three approaches. First, time-to-collision value is to be calculated based on low-cost camera video input. Second, the trajectory of the detected vehicle is predicted based on video data in the 2 D pixel coordinate. Third, the trajectory of the ego vehicle is predicted via the lean direction of the motorcycle from a low-cost inertial measurement unit sensor.

Findings

This encompasses a comprehensive Advanced FWC system which is an amalgamation of the three approaches mentioned above. First, to predict time-to-collision, nested Kalman filter and vehicle detection is used to convert image pixel matrix to relative distance, velocity and time-to-collision data. Next, for trajectory prediction of detected vehicles, a few algorithms were compared, and it was found that long short-term memory performs the best on the data set. The last finding is that to determine the leaning direction of the ego vehicle, it is better to use lean angle measurement compared to riding pattern classification.

Originality/value

The value of this paper is that it provides a POC FWC system that considers time-to-collision and trajectory of both detected and ego vehicle (motorcycle).

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 4 January 2021

Yuxue Jin, Jie Geng, Zhiyi He, Chuan Lv and Tingdi Zhao

Virtual maintenance simulation is of great importance to help designers find and avoid design problems. During its simulation phase, besides the high precision…

Abstract

Purpose

Virtual maintenance simulation is of great importance to help designers find and avoid design problems. During its simulation phase, besides the high precision requirement, collision detection must be suitable for all irregular objects in a virtual maintenance environment. Therefore, in this paper, a collision detection approach is proposed based on encapsulation for irregular objects in the virtual maintenance environment.

Design/methodology/approach

First, virtual maintenance simulation characteristics and several commonly used bounding boxes methods are analyzed, which motivates the application of encapsulation theory. Based on these, three different encapsulation methods are oriented to the needs of simulation, including encapsulation of rigid maintenance objects, flexible maintenance objects and maintenance personnel. In addition, to detecting collisions accurately, this paper divides the detection process into two stages. That is, in the first stage, a rough detection is carried out and then a tiny slice space is constructed to generate corresponding capsule groups, which will be redetected in the secondary stage. At last, several case studies are applied to illustrate the performance of the methodology.

Findings

The automatic construction algorithm for bounding boxes can be adapted to all forms of objects. The number of detection primitives are greatly reduced. It introduces the reachable space of the human body in maintainability as the collision search area.

Originality/value

The advantages of virtual maintenance simulation could also be advantageous in the industry with further studies. The paper believes this study is of particular interest to the readers of your journal.

Details

Assembly Automation, vol. 41 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 5000