Search results

1 – 10 of 69
Open Access
Article
Publication date: 8 September 2021

Haijian Li, Junjie Zhang, Zihan Zhang and Zhufei Huang

This paper aims to use active fine lane management methods to solve the problem of congestion in a weaving area and provide theoretical and technical support for traffic control…

1033

Abstract

Purpose

This paper aims to use active fine lane management methods to solve the problem of congestion in a weaving area and provide theoretical and technical support for traffic control under the environment of intelligent connected vehicles (ICVs) in the future.

Design/methodology/approach

By analyzing the traffic capacities and traffic behaviors of domestic and foreign weaving areas and combining them with field investigation, the paper proposes the active and fine lane management methods for ICVs to optimal driving behavior in a weaving area. The VISSIM simulation of traffic flow vehicle driving behavior in weaving areas of urban expressways was performed using research data. The influence of lane-changing in advance on the weaving area was evaluated and a conflict avoidance area was established in the weaving area. The active fine lane management methods applied to a weaving area were verified for different scenarios.

Findings

The results of the study indicate that ICVs complete their lane changes before they reach a weaving area, their time in the weaving area does not exceed the specified time and the delay of vehicles that pass through the weaving area decreases.

Originality/value

Based on the vehicle group behavior, this paper conducts a simulation study on the active traffic management control-oriented to ICVs. The research results can optimize the management of lanes, improve the traffic capacity of a weaving area and mitigate traffic congestion on expressways.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 14 August 2017

Jose Ignacio Tamayo Segarra, Bilal Al Jammal and Hakima Chaouchi

Internet of Things’ (IoT’s) first wave started with tracking services for better inventory management mainly using radio frequency identification (RFID) technology. Later on…

2879

Abstract

Purpose

Internet of Things’ (IoT’s) first wave started with tracking services for better inventory management mainly using radio frequency identification (RFID) technology. Later on, monitoring services became one of the major interests, including sensing technologies, and then more actuation for remote control-type of IoT applications such as smart homes, smart cities and Industry 4.0. In this paper, the authors focus on the RFID technology impairment. They propose to take advantage of the mature IoT technologies that offer native service discovery such as blutooth or LTE D2D ProSe or Wifi Direct. Using the automatic service discovery in the new framework will make heterogeneous readers aware of the presence of other readers and this will be used by the proposed distributed algorithm to better control the multiple RFID reader interference problem. The author clearly considers emerging Industry 4.0 use case, where RFID technology is of major interest for both identification and tracking. To enhance the RFID tag reading performance, collisions in the RFID frequency should be minimized with reader-to-reader coordination protocols. In this paper, the author proposes a simple distributed reader anti-collision protocol named DiSim that makes use of proximity services of IoT network and is compliant with the current RFID standards. The author evaluates the efficiency of the proposal via simulation.

Design/methodology/approach

In this paper, the author proposes a simple distributed reader anti-collision protocol named DiSim that makes use of proximity services of IoT network and is compliant with the current RFID standards. The author evaluates the efficiency of the proposal via simulation to study its behavior in very dense and heterogeneous RFID environments. Specifically, the author explores the coexistence of powerful static readers and small mobile readers, comparing the proposal with a standard ETSI CSMA method. The proposal reduces significantly the number of access attempts, which are resource-expensive for the readers. The results show that the objectives of DiSim are met, producing low reader collision probability and, however, having lower average readings per reader per time.

Findings

DiSim is evaluated with the ETSI standard LBT protocol for multi-reader environments in several environments with varied levels of reader and tag densities, having both static powerful RFID readers and heterogeneous randomly moving mobile RFID readers. It effectively reduces the number of backoffs or contentions for the RFID channel. This has high reading success rate due to the avoided collisions; however, the readers are put to wait, and DiSim has less average readings per reader per time. As an additional side evaluation, the ETSI standard LBT mechanism was found to present a good performance for low-density mid-coverage scenarios, however, with high variability on the evaluation results.

Research limitations/implications

To show more results, the author needs to do real experimentation in a warehouse, such as Amazon warehouse, where he expects to have more and more robots, start shelves, automatic item finding on the shelve, etc.

Practical implications

Future work considers experimentation in a real warehouse equipped with heterogeneous RFID readers and real-time analysis of RFID reading efficiency also combined with indoor localization and navigation for warehouse mobile robots.

Social implications

More automatization is expected in the future; this work makes the use of RFID technology more efficient and opens more possibilities for services deployment in different domains such as the industry which was considered not only in this paper but also in smart cites and smart homes.

Originality/value

Compared to the literature, the proposal offers the advantage to not be dependent on a centralized server controlling the RFID readers. It also offers the possibility for an existing RFID architecture to add new readers from a different manufacturer, as the readers using the approach will have the possibility to discover the capabilities of the new interaction other RFID readers. This solution takes advantage of the available proximity service that will be more and more offered by the IoT technologies.

Open Access
Article
Publication date: 15 March 2018

Moufida Maimour

Multipath routing holds a great potential to provide sufficient bandwidth to a plethora of applications in wireless sensor networks. In this paper, we consider the problem of…

313

Abstract

Multipath routing holds a great potential to provide sufficient bandwidth to a plethora of applications in wireless sensor networks. In this paper, we consider the problem of interference that can significantly affect the expected performances. We focus on the performance evaluation of the iterative paths discovery approach as opposed to the traditional concurrent multipath routing. Five different variants of multipath protocols are simulated and evaluated using different performance metrics. We mainly show that the iterative approach allows better performances when used jointly with an interference-aware metric or when an interference-zone marking strategy is employed. This latter appears to exhibit the best performances in terms of success ratio, achieved throughput, control messages overhead as well as energy consumption.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 18 November 2021

Chaoru Lu and Chenhui Liu

This paper aims to present a cooperative adaptive cruise control, called stable smart driving model (SSDM), for connected and autonomous vehicles (CAVs) in mixed traffic streams…

905

Abstract

Purpose

This paper aims to present a cooperative adaptive cruise control, called stable smart driving model (SSDM), for connected and autonomous vehicles (CAVs) in mixed traffic streams with human-driven vehicles.

Design/methodology/approach

Considering the linear stability, SSDM is able to provide smooth deceleration and acceleration in the vehicle platoons with or without cut-in. Besides, the calibrated Virginia tech microscopic energy and emission model is applied in this study to investigate the impact of CAVs on the fuel consumption of the vehicle platoon and traffic flows. Under the cut-in condition, the SSDM outperforms ecological SDM and SDM in terms of stability considering different desired time headways. Moreover, single-lane vehicle dynamics are simulated for human-driven vehicles and CAVs.

Findings

The result shows that CAVs can reduce platoon-level fuel consumption. SSDM can save the platoon-level fuel consumption up to 15%, outperforming other existing control strategies. Considering the single-lane highway with merging, the higher market penetration of SSDM-equipped CAVs leads to less fuel consumption.

Originality/value

The proposed rule-based control method considered linear stability to generate smoother deceleration and acceleration curves. The research results can help to develop environmental-friendly control strategies and lay the foundation for the new methods.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 14 August 2017

Mohammad Nurunnabi

494

Abstract

Details

PSU Research Review, vol. 1 no. 2
Type: Research Article
ISSN: 2399-1747

Open Access
Article
Publication date: 27 July 2022

Ruilin Yu, Yuxin Zhang, Luyao Wang and Xinyi Du

Time headway (THW) is an essential parameter in traffic safety and is used as a typical control variable by many vehicle control algorithms, especially in safety-critical ADAS and…

1250

Abstract

Purpose

Time headway (THW) is an essential parameter in traffic safety and is used as a typical control variable by many vehicle control algorithms, especially in safety-critical ADAS and automated driving systems. However, due to the randomness of human drivers, THW cannot be accurately represented, affecting scholars’ more profound research.

Design/methodology/approach

In this work, two data sets are used as the experimental data to calculate the goodness-of-fit of 18 commonly used distribution models of THW to select the best distribution model. Subsequently, the characteristic parameters of traffic flow are extracted from the data set, and three variables with higher importance are extracted using the random forest model. Combining the best distribution model parameters of the data set, this study obtained a distribution model with adaptive parameters, and its performance and applicability are verified.

Findings

In this work, two data sets are used as the experimental data to calculate the goodness-of-fit of 18 commonly used distribution models of THW to select the best distribution model. Subsequently, the characteristic parameters of traffic flow are extracted from the data set, and three variables with higher importance are extracted using the random forest model. Combining the best distribution model parameters of the data set, this study obtained a distribution model with adaptive parameters, and its performance and applicability are verified.

Originality/value

The results show that the proposed model has a 62.7% performance improvement over the distribution model with fixed parameters. Moreover, the parameter function of the distribution model can be regarded as a quantitative analysis of the degree of influence of the traffic flow state on THW.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 12 July 2022

Zheng Xu, Yihai Fang, Nan Zheng and Hai L. Vu

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

Abstract

Purpose

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

Design/methodology/approach

The simulation environment is established by integrating virtual reality interface with a micro-simulation model. In the simulation, the vehicle autonomy is developed by a framework that integrates artificial neural networks and genetic algorithms. Human-subject experiments are carried, and participants are asked to virtually sit in the developed autonomous vehicle (AV) that allows for both human driving and autopilot functions within a mixed traffic environment.

Findings

Not surprisingly, the inconsistency is identified between two driving modes, in which the AV’s driving maneuver causes the cognitive bias and makes participants feel unsafe. Even though only a shallow portion of the cases that the AV ended up with an accident during the testing stage, participants still frequently intervened during the AV operation. On a similar note, even though the statistical results reflect that the AV drives under perceived high-risk conditions, rarely an actual crash can happen. This suggests that the classic safety surrogate measurement, e.g. time-to-collision, may require adjustment for the mixed traffic flow.

Research limitations/implications

Understanding the behavior of AVs and the behavioral difference between AVs and human drivers are important, where the developed platform is only the first effort to identify the critical scenarios where the AVs might fail to react.

Practical implications

This paper attempts to fill the existing research gap in preparing close-to-reality tools for AV experience and further understanding human behavior during high-level autonomous driving.

Social implications

This work aims to systematically analyze the inconsistency in driving patterns between manual and autopilot modes in various driving scenarios (i.e. multiple scenes and various traffic conditions) to facilitate user acceptance of AV technology.

Originality/value

A close-to-reality tool for AV experience and AV-related behavioral study. A systematic analysis in relation to the inconsistency in driving patterns between manual and autonomous driving. A foundation for identifying the critical scenarios where the AVs might fail to react.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Book part
Publication date: 4 May 2018

Maizuar, Lihai Zhang, Russell Thompson and Herman Fithra

Purpose – The purpose of this study is to develop a numerical framework to predict the time-dependent probability of failure of a bridge subjected to multiple vehicle impacts…

Abstract

Purpose – The purpose of this study is to develop a numerical framework to predict the time-dependent probability of failure of a bridge subjected to multiple vehicle impacts. Specially, this study focuses on investigating the inter-relationship between changes in life-cycle parameters (e.g., damage size caused by vehicle impact, loss of initial structural capacity, and threshold intervention) and bridges probability of failure.

Design/Methodology/Approach – The numerical procedure using MATLAB program is developed to compute the probability failure of a bridge. First, the importance and characteristics of life-cycle analysis is described. Then, model for damage accumulation and life cycle as a result of heavy vehicle impacts is discussed. Finally, the probability of failure of a bridge subjected to vehicle impacts as a result of change in life-cycle parameters is presented.

Findings – The results of study show that damage size caused by both vehicle impacts and loss of initial structural capacity have a great impact on the long-term safety of bridges. In addition, the probability of failure of a bridge under different threshold limits indicates that the structural intervention (e.g., repair or maintenance) should be undertaken to extend the service life of a bridge.

Research Limitations/Implications – The damage sizes caused by heavy vehicle impacts are based on simple assumptions. It is suggested that there would be a further study to estimate the magnitude of bridge damage as a result of vehicle impact using the full-scale impact test or computational simulation.

Practical Implications – This will allow much better predictions for residual life of bridges which could potentially be used to support decisions on health and maintenance of bridges.

Originality/Value – The life-cycle performance for assessing the time-dependent probability of failure of bridges subjected to multiple vehicle impact has not been fully discussed so far.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Open Access
Article
Publication date: 30 June 2022

Quan Yuan, Xuecai Xu, Tao Wang and Yuzhi Chen

This study aims to investigate the safety and liability of autonomous vehicles (AVs), and identify the contributing factors quantitatively so as to provide potential insights on…

Abstract

Purpose

This study aims to investigate the safety and liability of autonomous vehicles (AVs), and identify the contributing factors quantitatively so as to provide potential insights on safety and liability of AVs.

Design/methodology/approach

The actual crash data were obtained from California DMV and Sohu websites involved in collisions of AVs from 2015 to 2021 with 210 observations. The Bayesian random parameter ordered probit model was proposed to reflect the safety and liability of AVs, respectively, as well as accommodating the heterogeneity issue simultaneously.

Findings

The findings show that day, location and crash type were significant factors of injury severity while location and crash reason were significant influencing the liability.

Originality/value

The results provide meaningful countermeasures to support the policymakers or practitioners making strategies or regulations about AV safety and liability.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 1 October 2018

Xunjia Zheng, Bin Huang, Daiheng Ni and Qing Xu

The purpose of this paper is to accurately capture the risks which are caused by each road user in time.

2802

Abstract

Purpose

The purpose of this paper is to accurately capture the risks which are caused by each road user in time.

Design/methodology/approach

The authors proposed a novel risk assessment approach based on the multi-sensor fusion algorithm in the real traffic environment. Firstly, they proposed a novel detection-level fusion approach for multi-object perception in dense traffic environment based on evidence theory. This approach integrated four states of track life into a generic fusion framework to improve the performance of multi-object perception. The information of object type, position and velocity was accurately obtained. Then, they conducted several experiments in real dense traffic environment on highways and urban roads, which enabled them to propose a novel road traffic risk modeling approach based on the dynamic analysis of vehicles in a variety of driving scenarios. By analyzing the generation process of traffic risks between vehicles and the road environment, the equivalent forces of vehicle–vehicle and vehicle–road were presented and theoretically calculated. The prediction steering angle and trajectory were considered in the determination of traffic risk influence area.

Findings

The results of multi-object perception in the experiments showed that the proposed fusion approach achieved low false and missing tracking, and the road traffic risk was described as a field of equivalent force. The results extend the understanding of the traffic risk, which supported that the traffic risk from the front and back of the vehicle can be perceived in advance.

Originality/value

This approach integrated four states of track life into a generic fusion framework to improve the performance of multi-object perception. The information of object type, position and velocity was used to reduce erroneous data association between tracks and detections. Then, the authors conducted several experiments in real dense traffic environment on highways and urban roads, which enabled them to propose a novel road traffic risk modeling approach based on the dynamic analysis of vehicles in a variety of driving scenarios. By analyzing the generation process of traffic risks between vehicles and the road environment, the equivalent forces of vehicle–vehicle and vehicle–road were presented and theoretically calculated.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

1 – 10 of 69