Search results

1 – 10 of 272
Article
Publication date: 4 August 2022

Biranchi Narayan Kar, Paulson Samuel, Jatin Kumar Pradhan and Amit Mallick

This paper aims to present an improvement to the power quality of the grid by using a colliding body optimization (CBO) based proportional-integral (PI) compensated design for a…

Abstract

Purpose

This paper aims to present an improvement to the power quality of the grid by using a colliding body optimization (CBO) based proportional-integral (PI) compensated design for a grid-connected solar photovoltaic-fed brushless DC motor (BLDC)-driven water pumping system with a bidirectional power flow control. The system with bidirectional power flow allows driving the pump at full proportions uninterruptedly irrespective of the weather conditions and feeding a grid when water pumping is not required.

Design/methodology/approach

Here, power quality issue is taken care of by the optimal generation of the duty cycle of the voltage source converter. The duty cycle is optimally generated by optimal selection of the gains of the current controller (i.e. PI), with the CBO technique resulting in a nearly unity power factor as well as lower total harmonic distortion (THD) of input current. In the CBO technique, the gains of the PI controller are considered as agents and collide with each other to obtain the best value. The system is simulated using MATLAB/Simulink and validated in real time with OPAL RT simulator, OP5700.

Findings

It was found that the power quality of grid using the CBO technique has improved much better than the particle swarm optimization and Zeigler–Nichols approach. The bidirectional flow of control of VSC allowed for optimum resource utilization and full capacity of water pumping whatever may be weather conditions.

Originality/value

Improved power quality of grid by optimally generation of the duty cycle for the proposed system. A unit vector tamplate generation technique is used for bidirectional power transfer.

Article
Publication date: 25 October 2021

Venkata Dasu Marri, Veera Narayana Reddy P. and Chandra Mohan Reddy S.

Image classification is a fundamental form of digital image processing in which pixels are labeled into one of the object classes present in the image. Multispectral image…

Abstract

Purpose

Image classification is a fundamental form of digital image processing in which pixels are labeled into one of the object classes present in the image. Multispectral image classification is a challenging task due to complexities associated with the images captured by satellites. Accurate image classification is highly essential in remote sensing applications. However, existing machine learning and deep learning–based classification methods could not provide desired accuracy. The purpose of this paper is to classify the objects in the satellite image with greater accuracy.

Design/methodology/approach

This paper proposes a deep learning-based automated method for classifying multispectral images. The central issue of this work is that data sets collected from public databases are first divided into a number of patches and their features are extracted. The features extracted from patches are then concatenated before a classification method is used to classify the objects in the image.

Findings

The performance of proposed modified velocity-based colliding bodies optimization method is compared with existing methods in terms of type-1 measures such as sensitivity, specificity, accuracy, net present value, F1 Score and Matthews correlation coefficient and type 2 measures such as false discovery rate and false positive rate. The statistical results obtained from the proposed method show better performance than existing methods.

Originality/value

In this work, multispectral image classification accuracy is improved with an optimization algorithm called modified velocity-based colliding bodies optimization.

Details

International Journal of Pervasive Computing and Communications, vol. 17 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 12 October 2020

Ali Kaveh, Hossein Akbari and Seyed Milad Hosseini

This paper aims to present a new physically inspired meta-heuristic algorithm, which is called Plasma Generation Optimization (PGO). To evaluate the performance and capability of…

Abstract

Purpose

This paper aims to present a new physically inspired meta-heuristic algorithm, which is called Plasma Generation Optimization (PGO). To evaluate the performance and capability of the proposed method in comparison to other optimization methods, two sets of test problems consisting of 13 constrained benchmark functions and 6 benchmark trusses are investigated numerically. The results indicate that the performance of the proposed method is competitive with other considered state-of-the-art optimization methods.

Design/methodology/approach

In this paper, a new physically-based metaheuristic algorithm called plasma generation optimization (PGO) algorithm is developed for solving constrained optimization problems. PGO is a population-based optimizer inspired by the process of plasma generation. In the proposed algorithm, each agent is considered as an electron. Movement of electrons and changing their energy levels are based on simulating excitation, de-excitation and ionization processes occurring through the plasma generation. In the proposed PGO, the global optimum is obtained when plasma is generated with the highest degree of ionization.

Findings

A new physically-based metaheuristic algorithm called the PGO algorithm is developed that is inspired from the process of plasma generation.

Originality/value

The results indicate that the performance of the proposed method is competitive with other state-of-the-art methods.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 January 2019

Yuanyang Zou

This paper aims to propose a novel nature-inspired optimization algorithm, called whirlpool algorithm (WA), which imitates the physical phenomenon of whirlpool.

Abstract

Purpose

This paper aims to propose a novel nature-inspired optimization algorithm, called whirlpool algorithm (WA), which imitates the physical phenomenon of whirlpool.

Design/methodology/approach

The idea of this algorithm stems from the fact that the whirlpool has a descent direction and a vertex.

Findings

WA is tested with two types of models: 29 typical mathematical optimization models and three engineering problems (tension/compression spring design, welded-beam design, pressure vessel design).

Originality/value

The results shown that the WA is vying compared to the state-of-art algorithms likewise conservative approaches.

Details

Engineering Computations, vol. 36 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2020

Maozeng Xu, Zhongya Mei, Siyu Luo and Yi Tan

This paper aims to analyze and provide insight on the algorithms for the optimization of construction site layout planning (CSLP). It resolves problems, such as the selection of…

1235

Abstract

Purpose

This paper aims to analyze and provide insight on the algorithms for the optimization of construction site layout planning (CSLP). It resolves problems, such as the selection of suitable algorithms, considering the optimality, optimization objectives and representation of layout solutions. The approaches for the better utilization of optimization algorithms are also presented.

Design/methodology/approach

To achieve the above, existing records (results = 200) were selected from three databases: Web of Science, ScienceDirect and Scopus. By implementing a systematic protocol, the articles related to the optimization algorithms for the CLSP (results = 75) were identified. Moreover, various related themes were collated and analyzed according to a coding structure.

Findings

The results indicate the consistent and increasing interest on the optimization algorithms for the CLSP, revealing that the trend in shifting to smart approaches in the construction industry is significant. Moreover, the interest in metaheuristic algorithms is dominant because 65.3% of the selected articles focus on these algorithms. The optimality, optimization objectives and solution representations are also important in algorithm selection. With the employment of other algorithms, self-developed applications and commercial software, optimization algorithms can be better utilized for solving CSLP problems. The findings also identify the gaps and directions for future research.

Research limitations/implications

The selection of articles in this review does not consider the industrial perspective and practical applications of commercial software. Further comparative analyses of major algorithms are necessary because this review only focuses on algorithm types.

Originality/value

This paper presents a comprehensive systematic review of articles published in the recent decade. It significantly contributes to the demonstration of the status and selection of CLSP algorithms and the benefit of using these algorithms. It also identifies the research gaps in knowledge and reveals potential improvements for future research.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 8 August 2016

Asma Chakri, Rabia Khelif and Mohamed Benouaret

The first order reliability method requires optimization algorithms to find the minimum distance from the origin to the limit state surface in the normal space. The purpose of…

1137

Abstract

Purpose

The first order reliability method requires optimization algorithms to find the minimum distance from the origin to the limit state surface in the normal space. The purpose of this paper is to develop an improved version of the new metaheuristic algorithm inspired from echolocation behaviour of bats, namely, the bat algorithm (BA) dedicated to perform structural reliability analysis.

Design/methodology/approach

Modifications have been embedded to the standard BA to enhance its efficiency, robustness and reliability. In addition, a new adaptive penalty equation dedicated to solve the problem of the determination of the reliability index and a proposition on the limit state formulation are presented.

Findings

The comparisons between the improved bat algorithm (iBA) presented in this paper and other standard algorithms on benchmark functions show that the iBA is highly efficient, and the application to structural reliability problems such as the reliability analysis of overhead crane girder proves that results obtained with iBA are highly reliable.

Originality/value

A new iBA and an adaptive penalty equation for handling equality constraint are developed to determine the reliability index. In addition, the low computing time and the ease implementation of this method present great advantages from the engineering viewpoint.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 November 2017

Grasiele Regina Duarte, Afonso Celso de Castro Lemonge and Leonardo Goliatt da Fonseca

The purpose of this paper is to evaluate the performance of social spider algorithm (SSA) to solve constrained structural optimisation problems and to compare its results with…

Abstract

Purpose

The purpose of this paper is to evaluate the performance of social spider algorithm (SSA) to solve constrained structural optimisation problems and to compare its results with others algorithms such as genetic algorithm, particle swarm optimisation, differential evolution and artificial bee colony.

Design/methodology/approach

To handle the constraints of the problems, this paper couples to the SSA an efficient selection criteria proposed in the literature that promotes a tournament between two solutions in which the feasible or less infeasible solution wins. The discussion is conducted on the competitiveness of the SSA with other algorithms as well as its performance in constrained problems.

Findings

SSA is a population algorithm proposed for global optimisation inspired by the foraging of social spiders. A spider moves on the web towards the position of the prey, guided by vibrations that occur around it in different frequencies. The SSA was proposed to solve problems without constraints, but these are present in most of practical problems. This paper evaluates the performance of SSA to solve constrained structural optimisation problems and compares its results with other algorithms such as genetic algorithm, particle swarm optimisation, differential evolution and artificial bee colony.

Research limitations/implications

The proposed algorithm has no limitations, and it can be applied in other classes of constrained optimisation problems.

Practical implications

This paper evaluated the proposed algorithm with a benchmark of constrained structural optimisation problems intensely used in the literature, but it can be applied to solve real constrained optimisation problems in engineering and others areas.

Originality/value

This is the first paper to evaluate the performance of SSA in constrained problems and to compare its results with other algorithms traditional in the literature.

Details

Engineering Computations, vol. 34 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 March 2020

Ali Kaveh and Ataollah Zaerreza

This paper aims to present a new multi-community meta-heuristic optimization algorithm, which is called shuffled shepherd optimization algorithm (SSOA). In this algorithm.

Abstract

Purpose

This paper aims to present a new multi-community meta-heuristic optimization algorithm, which is called shuffled shepherd optimization algorithm (SSOA). In this algorithm.

Design/methodology/approach

The agents are first separated into multi-communities and the optimization process is then performed mimicking the behavior of a shepherd in nature operating on each community.

Findings

A new multi-community meta-heuristic optimization algorithm called a shuffled shepherd optimization algorithm is developed in this paper and applied to some attractive examples.

Originality/value

A new metaheuristic is presented and tested with some classic benchmark problems and some attractive structures are optimized.

Article
Publication date: 16 April 2018

Dianzi Liu, Chengyang Liu, Chuanwei Zhang, Chao Xu, Ziliang Du and Zhiqiang Wan

In real-world cases, it is common to encounter mixed discrete-continuous problems where some or all of the variables may take only discrete values. To solve these non-linear…

Abstract

Purpose

In real-world cases, it is common to encounter mixed discrete-continuous problems where some or all of the variables may take only discrete values. To solve these non-linear optimization problems, the use of finite element methods is very time-consuming. The purpose of this study is to investigate the efficiency of the proposed hybrid algorithms for the mixed discrete-continuous optimization and compare it with the performance of genetic algorithms (GAs).

Design/methodology/approach

In this paper, the enhanced multipoint approximation method (MAM) is used to reduce the original nonlinear optimization problem to a sequence of approximations. Then, the sequential quadratic programing technique is applied to find the continuous solution. Following that, the implementation of discrete capability into the MAM is developed to solve the mixed discrete-continuous optimization problems.

Findings

The efficiency and rate of convergence of the developed hybrid algorithms outperforming GA are examined by six detailed case studies in the ten-bar planar truss problem, and the superiority of the Hooke–Jeeves assisted MAM algorithm over the other two hybrid algorithms and GAs is concluded.

Originality/value

The authors propose three efficient hybrid algorithms, the rounding-off, the coordinate search and the Hooke–Jeeves search-assisted MAMs, to solve nonlinear mixed discrete-continuous optimization problems. Implementations include the development of new procedures for sampling discrete points, the modification of the trust region adaptation strategy and strategies for solving mix optimization problems. To improve the efficiency and effectiveness of metamodel construction, regressors f defined in this paper can have the form in common with the empirical formulation of the problems in many engineering subjects.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 May 2023

Farbod Zahedi, Hamidreza Kia and Mohammad Khalilzadeh

The vehicle routing problem (VRP) has been widely investigated during last decades to reduce logistics costs and improve service level. In addition, many researchers have realized…

Abstract

Purpose

The vehicle routing problem (VRP) has been widely investigated during last decades to reduce logistics costs and improve service level. In addition, many researchers have realized the importance of green logistic system design in decreasing environmental pollution and achieving sustainable development.

Design/methodology/approach

In this paper, a bi-objective mathematical model is developed for the capacitated electric VRP with time windows and partial recharge. The first objective deals with minimizing the route to reduce the costs related to vehicles, while the second objective minimizes the delay of arrival vehicles to depots based on the soft time window. A hybrid metaheuristic algorithm including non-dominated sorting genetic algorithm (NSGA-II) and teaching-learning-based optimization (TLBO), called NSGA-II-TLBO, is proposed for solving this problem. The Taguchi method is used to adjust the parameters of algorithms. Several numerical instances in different sizes are solved and the performance of the proposed algorithm is compared to NSGA-II and multi-objective simulated annealing (MOSA) as two well-known algorithms based on the five indexes including time, mean ideal distance (MID), diversity, spacing and the Rate of Achievement to two objectives Simultaneously (RAS).

Findings

The results demonstrate that the hybrid algorithm outperforms terms of spacing and RAS indexes with p-value <0.04. However, MOSA and NSGA-II algorithms have better performance in terms of central processing unit (CPU) time index. In addition, there is no meaningful difference between the algorithms in terms of MID and diversity indexes. Finally, the impacts of changing the parameters of the model on the results are investigated by performing sensitivity analysis.

Originality/value

In this research, an environment-friendly transportation system is addressed by presenting a bi-objective mathematical model for the routing problem of an electric capacitated vehicle considering the time windows with the possibility of recharging.

1 – 10 of 272