Search results

1 – 10 of 114
Open Access
Article
Publication date: 24 August 2023

Andrew Ebekozien, Wellington Didibhuku Thwala, Clinton Ohis Aigbavboa and Mohamad Shaharudin Samsurijan

Studies showed that construction digitalisation could prevent or mitigate accidents rate on sites. Digitalisation applications may prevent or mitigate building project collapse…

Abstract

Purpose

Studies showed that construction digitalisation could prevent or mitigate accidents rate on sites. Digitalisation applications may prevent or mitigate building project collapse (BPC) but with some encumbrances, especially in developing countries. There is a paucity of research on digital technologies application to prevent or mitigate BPC in Nigeria. Thus, the research aims to explore the perceived barriers that may hinder digital technologies from preventing or mitigating building collapse and recommend measures to improve technology applications during development.

Design/methodology/approach

The study is exploratory because of the unexplored approach. The researchers collected data from knowledgeable participants in digitalisation and building collapse in Nigeria. The research employed a phenomenology approach and analysed collected data via a thematic approach. The study achieved saturation at the 29th interviewee.

Findings

Findings show that lax construction digitalisation implementation, absence of regulatory framework, lax policy, unsafe fieldworkers' behaviours, absence of basic infrastructure, government attitude, hesitation to implement and high technology budget, especially in developing countries, are threats to curbing building collapse menace via digitalisation. The study identified technologies relevant to preventing or mitigating building collapse. Also, it proffered measures to prevent or mitigate building collapse via improved digital technology applications during development.

Originality/value

This research contributes to the construction digitalisation literature, especially in developing countries, and investigates the perceived barriers that may hinder digital technologies usage in preventing or mitigating building collapse in Nigeria.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 16 April 2024

Chaofan Wang, Yanmin Jia and Xue Zhao

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted…

Abstract

Purpose

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted. Seismic fragility analysis has an important role in seismic hazard evaluation. In this paper, the seismic fragility of sleeve connected prefabricated column is analyzed.

Design/methodology/approach

A model for predicting the seismic demand on sleeve connected prefabricated columns has been created by incorporating engineering demand parameters (EDP) and probabilities of seismic failure. The incremental dynamics analysis (IDA) curve clusters of this type of column were obtained using finite element analysis. The seismic fragility curve is obtained by regression of Exponential and Logical Function Model.

Findings

The IDA curve cluster gradually increased the dispersion after a peak ground acceleration (PGA) of 0.3 g was reached. For both columns, the relative displacement of the top of the column significantly changed after reaching 50 mm. The seismic fragility of the prefabricated column with the sleeve placed in the cap (SPCA) was inadequate.

Originality/value

The sleeve was placed in the column to overcome the seismic fragility of prefabricated columns effectively. In practical engineering, it is advisable to utilize these columns in regions susceptible to earthquakes and characterized by high seismic intensity levels in order to mitigate the risk of structural damage resulting from ground motion.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Executive summary
Publication date: 12 April 2024

UNITED STATES: Emergency road funding poses challenges

Details

DOI: 10.1108/OXAN-ES286393

ISSN: 2633-304X

Keywords

Geographic
Topical
Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 19 April 2024

Knut S. Vikør

While most West European nations were formed around pre-existing entities that could be called “countries” before the modern age, this was not the case in the Middle East. Some…

Abstract

While most West European nations were formed around pre-existing entities that could be called “countries” before the modern age, this was not the case in the Middle East. Some entities, like Egypt, did have a clear political and cultural identity before colonialism, others, like Algeria, did not. This chapter discusses the four states of the Maghreb: Morocco, Algeria, Tunisia and Libya, through the perspective of “country creation” going into and coming out of colonial rule. We can see here two “models” of fairly similar types of historical development, one showing a gradual process through a protectorate period to relatively stable modern nations, another through violent conquest and direct colonization ending in violent liberation and military and wealthy but fragile states. The article asks whether these models for the history of country creation and the presence or absence of pre-colonial identities can help explain the modern history and nature of these states in the Arab Spring and the years thereafter. Then, a more tentative attempt is made to apply these models to two countries of the Arab east, Syria and Iraq. While local variations ensure that no model can be transferred directly, it can show the importance of studying the historical factors that go into the transition from geographical region to a country with people that can form the basis of a nation.

Details

A Comparative Historical and Typological Approach to the Middle Eastern State System
Type: Book
ISBN: 978-1-83753-122-6

Keywords

Article
Publication date: 10 November 2022

Nursyamsi Nursyamsi, Johannes Tarigan, Muhammad Aswin, Badorul Hisham Abu Bakar and Harianto Hardjasaputra

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading…

Abstract

Purpose

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading, inadequate design, poor work execution, fire, storm, earthquakes etc. Therefore, repairing and strengthening is one way to improve damaged structures, so that they can be reutilized. In this research, the use of an ultra high-performance fibre-reinforced concrete (UHPFRC) layer is proposed as a strengthening material to rehabilitate damaged-RC beams. Different strengthening schemes pertaining to the structural performance of the retrofitted RC beams due to the flexural load were investigated.

Design/methodology/approach

A total of 13 normal RC beams were prepared. All the beams were subjected to a four-point flexural test. One beam was selected as the control beam and tested to failure, whereas the remaining beams were tested under a load of up to 50% of the ultimate load capacity of the control beam. The damaged beams were then strengthened using a UHPFRC layer with two different schemes; strip-shape and U-shape schemes, before all the beams were tested to failure.

Findings

Based on the test results, the control beam and all strengthened beams failed in the flexural mode. Compared to the control beam, the damaged-RC beams strengthened using the strip-shape scheme provided an increase in the ultimate load capacity ranging from 14.50% to 43.48% (or an increase of 1.1450 to 1.4348 times), whereas for the U-shape scheme beams ranged from 48.70% to 149.37% (or an increase of 1.4870–2.4937 times). The U-shape scheme was more effective in rehabilitating the damaged-RC beams. The UHPFRC mixtures are workable, as well easy to place and cast into the formworks. Furthermore, the damaged-RC beams strengthened using strip-shape scheme and U-shape scheme generated ductility factors of greater than 4 and 3, respectively. According to Eurocode8, these values are suitable for seismically active regions. Therefore, the strengthened damaged-RC beams under this study can quite feasibly be used in such regions.

Research limitations/implications

Observations of crack patterns were not accompanied by measurements of crack widths due to the unavailability of a microcrack meter in the laboratory. The cost of the strengthening system application were not evaluated in this study, so the users should consider wisely related to the application of this method on the constructions.

Practical implications

Rehabilitation of the damaged-RC beams exhibited an adequate structural performance, where all strengthened RC beams fail in the flexural mode, as well as having increment in the failure load capacity and ductility. So, the used strengthening system in this study can be applied for the building construction in the seismic regions.

Social implications

Aside from equipment, application of this strengthening system need also the labours.

Originality/value

The use of sand blasting on the surfaces of the damaged-RC beams, as well as the application of UHPFRC layers of different thicknesses and shapes to strengthen the damaged-RC beams, provides a novel innovation in the strengthening of damaged-RC beams, which can be applicable to either bridge or building constructions.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Graphic analysis
Publication date: 16 April 2024

Last month’s collapse of a bridge in Baltimore, blocking access to its harbour, has focused attention on container ports

Details

DOI: 10.1108/OXAN-GA286451

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 19 April 2024

Mahesh Gaikwad, Suvir Singh, N. Gopalakrishnan, Pradeep Bhargava and Ajay Chourasia

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the…

Abstract

Purpose

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the non-dimensional capacity parameters for the axial and flexural load-carrying capacity of reinforced concrete (RC) sections for heating and the subsequent post-heating phase (decay phase) of the fire.

Design/methodology/approach

The sectional analysis method is used to determine the moment and axial capacities. The findings of sectional analysis and heat transfer for the heating stage are initially validated, and the analysis subsequently proceeds to determine the load capacity during the fire’s heating and decay phases by appropriately incorporating non-dimensional sectional and material parameters. The numerical analysis includes four fire curves with different cooling rates and steel percentages.

Findings

The study’s findings indicate that the rate at which the cooling process occurs after undergoing heating substantially impacts the axial and flexural capacity. The maximum degradation in axial and flexural capacity occurred in the range of 15–20% for cooling rates of 3 °C/min and 5 °C/min as compared to the capacity obtained at 120 min of heating for all steel percentages. As the fire cooling rate reduced to 1 °C/min, the highest deterioration in axial and flexural capacity reached 48–50% and 42–46%, respectively, in the post-heating stage.

Research limitations/implications

The established non-dimensional parameters for axial and flexural capacity are limited to the analysed section in the study owing to the thermal profile, however, this can be modified depending on the section geometry and fire scenario.

Practical implications

The study primarily focusses on the degradation of axial and flexural capacity at various time intervals during the entire fire exposure, including heating and cooling. The findings obtained showed that following the completion of the fire’s heating phase, the structural capacity continued to decrease over the subsequent post-heating period. It is recommended that structural members' fire resistance designs encompass both the heating and cooling phases of a fire. Since the capacity degradation varies with fire duration, the conventional method is inadequate to design the load capacity for appropriate fire safety. Therefore, it is essential to adopt a performance-based approach while designing structural elements' capacity for the desired fire resistance rating. The proposed technique of using non-dimensional parameters will effectively support predicting the load capacity for required fire resistance.

Originality/value

The fire-resistant requirements for reinforced concrete structures are generally established based on standard fire exposure conditions, which account for the fire growth phase. However, it is important to note that concrete structures can experience internal damage over time during the decay phase of fires, which can be quantitatively determined using the proposed non-dimensional parameter approach.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 15 April 2024

M. Kabir Hassan, Hasan Kazak, Melike Buse Akcan and Hasan Azazi

The purpose of this study is to determine whether the Ottoman Empire’s net interest payments and foreign debt were sustainable or not in terms of their burden on budget revenues…

Abstract

Purpose

The purpose of this study is to determine whether the Ottoman Empire’s net interest payments and foreign debt were sustainable or not in terms of their burden on budget revenues, using the method of historical econometric analysis.

Design/methodology/approach

In this study, the period between 1847 and 1882 of the Ottoman Empire is analyzed for sustainability analysis. Within the framework of the study, unit root tests and econometric analysis methods frequently used in the literature were used to analyze the sustainability of public debt. In the econometric analysis, in addition to various unit root tests, current econometric analysis methods, in particular Fourier expansion, were also used.

Findings

The results of econometric analyses showed that the burden of interest payments and foreign debt on the budget of the Ottoman state was unsustainable. This situation clearly shows the reason for the official bankruptcy of the Ottoman Empire, which was declared in 1875.

Practical implications

Although this study reveals the bankruptcy process of an important structure such as the Ottoman Empire in the historical process through econometric analyses, it also gives a very important message to today’s states. Accordingly, today’s state policies and decision-making mechanisms should take these results into account and strive to make the burden of public interest payments sustainable. It is believed that the study will shed light on the public finance policies of today’s states by drawing lessons from the collapse process of the Ottoman state.

Originality/value

Unlike the historical assessments in the literature on the decline of the Ottoman Empire, this study presents a cliometric approach by applying current econometric analysis techniques to past historical data. The study explains the unsustainability of the Ottoman Empire’s interest payments and external debt burden in the period under consideration in a way that, to the best of the authors’ knowledge, has not been done before.

Details

Journal of Islamic Accounting and Business Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1759-0817

Keywords

Article
Publication date: 7 December 2022

Qing-Wen Zhang, Pin-Chao Liao, Mingxuan Liang and Albert P.C. Chan

Quality failures in grid infrastructure construction would cause large-scale collapses in power supply and additional expenditures by reworks and repairs. Learning from quality…

Abstract

Purpose

Quality failures in grid infrastructure construction would cause large-scale collapses in power supply and additional expenditures by reworks and repairs. Learning from quality failures (LFQF) extracts experience from previous quality events and converts them into preventive measures to reduce or eliminate future construction quality issues. This study aims to investigate the influence factors of LFQF in the construction of grid infrastructure.

Design/methodology/approach

The related factors of LFQF, including quality management (QM) practices, quality rectification, and individual learning, were identified by reviewing literature about organizational learning and extracting experience from previous failures. A questionnaire survey was distributed to the grid companies in North, Northeast, Northwest, East, Central, and Southwest China. 381 valid responses collected and analyzed using structural equation modeling (SEM) to test the influence of these factors on LFQF.

Findings

The SEM results support that QM practices positively affect individual learning and LFQF. Quality rectification indirectly impacts LFQF via individual learning, while the results did not support the direct link between quality rectification and LFQF.

Practical implications

The findings strengthen practical insights into extracting experience from poor-quality issues and continuous improvement. The contributory factors of LFQF found in this study benefit the practitioners by taking effective measures to enhance organizational learning capability and improve the long-term construction quality performance in the grid infrastructure industry.

Originality/value

Existing research about the application of LFQF still stays at the explorative and conceptual stage. This study investigates the related factors of LFQF, including QM practices, quality rectification, and individual learning, extending the model development of learning from failures (LFF) in construction QM.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 114