Search results

1 – 10 of 16
Article
Publication date: 2 March 2015

Matthew Patrick Morrissey and René Michel Rossi

The purpose of this paper is to present some new results about reflective cold protective clothing (i.e. those featuring metal coatings), and compare and contrast the data with…

462

Abstract

Purpose

The purpose of this paper is to present some new results about reflective cold protective clothing (i.e. those featuring metal coatings), and compare and contrast the data with other recent research work.

Design/methodology/approach

The authors used a thermal manikin and a guarded hot plate to determine the thermal resistance of different textile assemblies and garment featuring plasma-deposited metal-coated insulation and interlayers.

Findings

Depending on the exact approach, the authors show that metal coatings can increase the thermal resistance of textile assemblies by ∼30-75 per cent.

Practical implications

New data on reflective cold weather clothing show that metal coatings could be an important addition to cold weather clothing, especially those featuring high air permeability/optical porosity insulation. Plasma-deposited metal coatings cause the lowest increase in weight.

Originality/value

This paper provides new data about the efficacy, in terms of thermal resistance, of metal coatings for cold weather clothing.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 April 2022

Shuyang Li, Shu Jiang, Miao Tian, Yun Su and Jun Li

The purpose of this paper is to gain an in-depth understanding of the research progress, hotspots and future trends in the field of functional clothing.

Abstract

Purpose

The purpose of this paper is to gain an in-depth understanding of the research progress, hotspots and future trends in the field of functional clothing.

Design/methodology/approach

The records of 4,153 pieces of literature related to functional clothing were retrieved from Web of Science by using a comprehensive retrieval strategy. A piece of software, CiteSpace was used as a tool to visualize the results of specific terms, such as author, institution and keyword. By analyzing the knowledge maps with several indicators, the intellectual basis and research fronts for the functional clothing domain could then be demonstrated.

Findings

The result indicated that functional clothing was a popular research field, with approximately 500 papers published worldwide in 2020. Its main research area was material science and involved public environmental and occupational health, engineering, etc. showing the characteristic of multi-interdisciplinary. Textile Research Journal and International Journal of Clothing Science and Technology were the top two journals in this field. The USA, China, Australia, England and Germany have been active and frequently cooperating with each other. Donghua University, the Hong Kong Polytechnic University and NASA, with the largest number of publications, were identified as the main research drivers. According to the co-citation analysis, thermal stress, nanogenerator and electrospinning were the topics of most cited articles during the past 20 years.

Practical implications

The findings identified smart clothing and protective clothing to be the research frontiers in the field of functional clothing, which deserved further study in the future.

Originality/value

The outcomes offered an overview of the research status and future trends of the functional clothing field. It could not only provide scholars with convenience in identifying research hotspots and building potential cooperation in the follow-up research, but also assist beginners in searching core scholars and literature of great significance.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 11 November 2013

Chao Sun, Jintu Fan, Huijun Wu, Yuenshing Wu and Xianfu Wan

The purpose of this paper is to develop multilayer clothing assemblies consisting of fibrous battings and reflective nano-fibrous thin layers for cold protective clothing for…

Abstract

Purpose

The purpose of this paper is to develop multilayer clothing assemblies consisting of fibrous battings and reflective nano-fibrous thin layers for cold protective clothing for improved thermal insulation.

Design/methodology/approach

Thermal insulation values of totally 20 assemblies made of varying layers of a thick polyester batting and four different types of thin interlayers were measured using a guarded hot-plate to investigate the effect of the properties of thin interlayers and construction of multilayer assemblies on thermal insulation. Cold protective jackets filled with polyester battings sandwiched with or without interlayers were also made and tested on the sweating fabric manikin-Walter.

Findings

Results show that the Rosseland mean extinction coefficients of the thin interlayer and the associated radiative thermal conductivity of the interlayers have significant influence on thermal insulation of the assembly when more than one reflective nano-fibrous interlayers are sandwiched in the assembly. The cold protective jacket filled with multilayer polyester battings and reflective nano-fibrous interlayers have better thermal insulation and moisture permeability index (im) than those filled with the same multilayer polyester battings, but with non-reflective nonwoven interlayers or without interlayers.

Originality/value

This paper clearly demonstrates the advantages of reflective nano-fibrous thin material for interlayers in the cold projective jacket.

Details

International Journal of Clothing Science and Technology, vol. 25 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 November 2017

Sora Shin, Hae-Hyun Choi, Yung Bin Kim, Byung-Hee Hong and Joo-Young Lee

The purpose of this paper is to evaluate the effects of intermittent and continuous heating protocols using graphene-heated clothing and identify more effective body region for…

Abstract

Purpose

The purpose of this paper is to evaluate the effects of intermittent and continuous heating protocols using graphene-heated clothing and identify more effective body region for heating in a cold environment.

Design/methodology/approach

Eight males participated in five experimental conditions at an air temperature of 0.6°C with 40 percent relative humidity: no heating, continuous heating the chest, continuous heating the back, intermittent heating the chest, and intermittent heating the back.

Findings

The results showed that the electric power consumption of the intermittent heating protocol (2.49 W) was conserved by 71 percent compared to the continuous protocol (8.58 W). Rectal temperature, cardiovascular and respiratory responses showed no significant differences among the four heating conditions, while heating the back showed more beneficial effects on skin temperatures than heating the chest.

Originality/value

First of all, this study was the first report to evaluate cold protective clothing with graphene heaters. Second, the authors provided effective intermittent heating protocols in terms of reducing power consumption, which was able to be evaluated with the characteristics of fast-responsive graphene heaters. Third, an intermittent heating protocol on the back was recommended to keep a balance between saving electric power and minimizing thermal discomfort in cold environments.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 June 2011

Joo‐Young Lee, Eun‐Sook Ko, Hyo‐Hyun Lee, Jae‐Young Kim and Jeong‐Wha Choi

The purpose of this paper is to examine differences between thermal insulation calculated by a global and a serial method using a thermal manikin, in comparison with human trials.

Abstract

Purpose

The purpose of this paper is to examine differences between thermal insulation calculated by a global and a serial method using a thermal manikin, in comparison with human trials.

Design/methodology/approach

A total of 150 single garments and 38 clothing ensembles were assessed using the manikin; 26 seasonal clothing ensembles were selected for human trials.

Findings

The results showed that total insulation of single garments was 16 percent higher in the serial method than in the global method. The difference was higher in garments with smaller covering area per unit garment mass (e.g. winter garments). For seasonal clothing ensembles, the serial values were 39.2 percent (0.18 clo) for spring/fall wear, 62.6 percent (0.15 clo) for summer wear and for winter wear 64.8 percent (0.69 clo) greater than the global values. The clothing insulation by the global method was systemically lower in all 26 seasonal ensembles than values by human trials, which suggests that the values by the global calculation can be more accurately corrected with human testing data.

Originality/value

The paper shows that values by the serial calculation were lower in spring/fall and summer ensembles but greater in winter garments than values collated by human trials. It suggests that the serial values had a lower validity when compared with thermal insulation values collated from human trials.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 October 2018

Xiaofang Guo, Hui Shi, Chenglong Wei and Xiao Dong Chen

The purpose of this paper is to reveal the unique thermal property of Mongolian clothing from the current western clothing and explain their environmental adaptation to the…

Abstract

Purpose

The purpose of this paper is to reveal the unique thermal property of Mongolian clothing from the current western clothing and explain their environmental adaptation to the climate of Mongolian plateau in China.

Design/methodology/approach

Thermal insulation and the temperature rating (TR) of eight Mongolian robe ensembles and two western clothing ensembles were investigated by manikin testing and wearing trials, respectively. The clothing area factor (fcl) of these Mongolian clothing was measured by photographic method and estimated equation from ISO 15831. Finally, the TR prediction model for Mongolian clothing was built and compared with current models for western clothing in ISO 7730 and for Tibetan clothing in previous article.

Findings

The results demonstrated that the total thermal insulation of Mongolian robe ensembles was much bigger than that of western clothing ensembles and ranged from 1.81clo to 3.11clo during the whole year. The fcl of the Mongolian clothing should be determined by photographic method because the differences between these two methods were much bigger from 0.6 to 13.9 percent; the TR prediction model for Mongolian robe ensembles is TR=25.57−7.13Icl, which revealed that the environmental adaptation of Mongolian clothing was much better than that of western clothing and similar to that of Tibetan clothing.

Originality/value

The research findings give a detailed information about the thermal property of China Mongolian clothing, and explain the environmental adaptation of Mongolian clothing to the cold and changing climate.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 March 2020

Yelin Ko, Sora Shin, Yong Seok Choi, Byung-Hee Hong, Sang-Yoon Park and Joo-Young Lee

The purpose of the study was to explore heat-accumulative and thermal-conductive characteristics of copper-graphene composite film (Cu-G film) while applying it to a human-skin…

Abstract

Purpose

The purpose of the study was to explore heat-accumulative and thermal-conductive characteristics of copper-graphene composite film (Cu-G film) while applying it to a human-skin analogue.

Design/methodology/approach

In the preliminary experiment, the authors evaluated the thermal conductive characteristics of the Cu-G film in three covered conditions (no film, copper film, and Cu-G film conditions). For the first factorial experiment, the heat-accumulative properties over heated pig skin were compared at air temperatures of 10, 25 and 35°C. For the second factorial experiment, 105 trials were conducted on pig skin by combining air temperatures, trapped air volumes, and numbers of film layers.

Findings

The results from the preliminary experiment showed that the Cu-G film distributed the surface heat to the outside of the Cu-G film, which resulted in even distribution of heat inside and outside the Cu-G film, whereas the copper film accumulated heat inside the copper film. The human-skin analogue of pig skin, however, showed the opposite tendency from that of the plastic. The pig-skin temperatures beneath the Cu-G film were higher than those beneath the copper film, and those differences were remarkable at the air temperature of 10°C. The accumulative heat was affected by the trapped air volume, fit to the skin, and number of Cu-G film layers.

Originality/value

In conclusion, the Cu-G film more effectively accumulated heat on the human-skin analogue than copper film, and those effects were more marked in cold environments than in mild or hot environments.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 June 2008

Damjana Celcar, Harriet Meinander and Jelka Geršak

The paper aims to investigate thermal comfort properties, such as heat and moisture transmission through male business clothing systems, by using a sweating thermal manikin…

2502

Abstract

Purpose

The paper aims to investigate thermal comfort properties, such as heat and moisture transmission through male business clothing systems, by using a sweating thermal manikin Coppelius that simulates heat and moisture production in a similar way to the human body and measures the influence of clothing on heat exchange in different environmental and sweating conditions.

Design/methodology/approach

Ten different combination of male business clothing systems were measured using the sweating manikin, under three environmental conditions (10°C/50 per cent RH, 25°C/50 per cent RH and −5°C), and at 0 and 50 gm−2 h−1 sweating levels, in order to evaluate the influence of environmental and sweating conditions on thermal comfort properties of clothing systems.

Findings

The results show how business clothing systems influence on the dry and evaporative heat loss between the manikin surface and environment in different environmental and sweating conditions.

Practical implications

When using sweating thermal manikin Coppelius, water vapour transmission (WVT) through and water condensation on the clothing can be determined simultaneously with the thermal insulation (It) of clothing system. Measured thermal comfort properties of clothing systems evaluated with a sweating thermal manikin can provide valuable information for the clothing industry by manufacturing/designing new clothing systems.

Originality/value

In this investigation, the heat and moisture transmission properties of male business clothing systems were measured in different environmental and sweating conditions. In the past few years, clothing materials containing microencapsulated phase‐change materials (PCMs) have appeared in outdoor garments, particularly sportswear; therefore, we decided to investigate the thermal comfort properties of different standard male business apparel, as well as male business clothing that contain PCMs used as liner and outerwear material.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 July 2020

Fatemeh Zahra Hourian Tabarestani, Fatemeh Mousazadegan and Nazanin Ezazshahabi

In the present work, the thermal insulation characteristics of multilayered mittens were studied in different airflow conditions.

Abstract

Purpose

In the present work, the thermal insulation characteristics of multilayered mittens were studied in different airflow conditions.

Design/methodology/approach

In this study, the thermal behavior of four groups of mittens consisting of one two-layer and three three-layer mittens containing nonwoven wadding materials with various weights and thicknesses was investigated during the exposure to airflows with different speeds. In order to evaluate the correlation between the heat transfer rates of different mittens with the human perception of cold, a set of pair-comparison tests was performed using Thurstone's law of comparative judgment.

Findings

The analysis of the results revealed that by an increment in the weight and the thickness of the wadding material, the thermal protection performance of mittens improves. Moreover, in the presence of airflow and by increasing its speed, due to the forced convective heat loss, the outer surface temperature of the mittens decreases and therefore the conductive heat transfer rate rises. This fact leads to the transfer of higher quantity of body warmth to the environment and thus feeling of coldness. According to the results, there was a proper correlation between the subjective perception of cold and the heat transfer rate of mittens. The statistical analysis of the results clarified that the effect of mitten's structural parameters and the airflow speed on the thermal protection behavior of mittens are significant at the confidence range of 95%.

Originality/value

Mitten is one of the important personal protective clothing, especially in cold environments. Thus, the thermal resistance of them has a prominent role in the protection of the hands and fingers from cold and frostbiting.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 31 May 2022

Samridhi Garg, Monica Puri Sikka and Vinay Kumar Midha

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable…

Abstract

Purpose

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable. The cloth absorbs sweat and then releases it, allowing the body to chill down. By capillary action, moisture is driven away from fabric pores or sucked out of yarns. Convectional air movement improves sweat drainage, which may aid in body temperature reduction. Clothing reduces the skin's ability to transport heat and moisture to the outside. Excessive moisture makes clothing stick to the skin, whereas excessive heat induces heat stress, making the user uncomfortable. Wet heat loss is significantly more difficult to understand than dry heat loss. The purpose of this study is to provided a good compilation of complete information on wet thermal comfort of textile and technological elements to be consider while constructing protective apparel.

Design/methodology/approach

This paper aims to critically review studies on the thermal comfort of textiles in wet conditions and assess the results to guide future research.

Findings

Several recent studies focused on wet textiles' impact on comfort. Moisture reduces the fabric's thermal insulation value while also altering its moisture characteristics. Moisture and heat conductivity were linked. Sweat and other factors impact fabric comfort. So, while evaluating a fabric's comfort, consider both external and inside moisture.

Originality/value

The systematic literature review in this research focuses on wet thermal comfort and technological elements to consider while constructing protective apparel.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 16