Search results

1 – 10 of over 1000
Article
Publication date: 21 November 2023

Nimasha Dilukshi Hulathdoowage, Gayani Karunasena, Nilupa Udawatta and Chunlu Liu

Over the years, the significance of retrofitting has gained much attention with the unveiling of its different applications, such as energy retrofit and deep retrofit, to enhance…

Abstract

Purpose

Over the years, the significance of retrofitting has gained much attention with the unveiling of its different applications, such as energy retrofit and deep retrofit, to enhance the climate-resilience of buildings. However, no single study comprehensively assesses the climate-resilience of retrofitting. The purpose of this study is to address this gap via a systematic literature review.

Design/methodology/approach

Quality journal studies were selected using the PRISMA method and analysed manually and using scientometrics. Three dimensions of climate-resilience, such as robustness, withstanding and recovery, were used to evaluate the contribution of retrofit measures for achieving climate-resilient houses across four climate zones: tropical, arid, temperate and cold.

Findings

Most passive measures can enhance the robustness of residential buildings but cannot verify for withstanding against immediate shocks and timely recovery. However, some passive measures, such as night-time ventilation, show excellent performance over all four climate zones. Active measures such as heating, ventilation and air conditioning and mechanical ventilation with heat recovery, can ensure climate-resilience in all three dimensions in the short-term but contribute to greenhouse gas emissions, further exacerbating the long-term climate. Integrating renewable energy sources can defeat this issue. Thus, all three retrofit strategies should appropriately be adopted together to achieve climate-resilient houses.

Research limitations/implications

Since the research is limited to secondary data, retrofit measures recommended in this research should be further investigated before application.

Originality/value

This review contributes to the knowledge domain of retrofitting by assessing the contribution of different retrofit measures to climate-resilience.

Details

International Journal of Disaster Resilience in the Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 6 June 2019

Zhen Peng, Wu Deng and Yuanda Hong

From the 2000s onward, construction practices of urban residential buildings in China have shown a material transformation from clay brick to aerated concrete block. Moreover, the…

Abstract

Purpose

From the 2000s onward, construction practices of urban residential buildings in China have shown a material transformation from clay brick to aerated concrete block. Moreover, the consumption of insulating materials for buildings has been increasing due to the new requirements in building energy-saving standards. This transformation and the increased consumption of insulating materials might have a vital impact on a building’s thermal comfort and its associated energy flows. Therefore, the purpose of this paper is to investigate the indoor thermal performance of urban residential buildings built with different materials and further discuss the correlations between indoor thermal comfort and the associated energy input.

Design/methodology/approach

This study investigated four residential buildings selected from four residential communities located in the cold climate zone of China. The Integrated Environment Solutions program was used to evaluate the thermal comfort levels and to quantify the operational energy consumption of the case study buildings. Additionally, the University of Bath’s Inventory of Carbon and Energy database was used to estimate the embodied energy consumption and CO2 emissions.

Findings

The study found that materials transition and increasing consumption did not necessarily improve indoor thermal comfort. However, the materials transition has significantly decreased the embodied energy consumption of urban residential buildings. Furthermore, the increased utilization of insulating materials has also decreased the heating and cooling energy consumption. Therefore, overall, the environmental impacts of urban residential buildings have been reduced significantly.

Practical implications

In the future, residential buildings completed in the 1990s will need regular maintenance, such as adding insulation. Residential buildings completed based on the latest energy-saving requirements should optimize their ventilation design, for example, by increasing the ventilation rate and by reducing solar heat gains in the summer.

Originality/value

This paper investigates the effects of the materials change on thermal comfort levels and the environmental impacts of urban residential buildings in the cold climate zone of China, as these have not been the focus of many previous studies.

Details

International Journal of Building Pathology and Adaptation, vol. 37 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 25 June 2019

Fatma Kürüm Varolgüneş

The purpose of this study is to compare vernacular and new houses in terms of indoor occupant satisfaction and thermal and visual comfort in a region with cold climatic…

Abstract

Purpose

The purpose of this study is to compare vernacular and new houses in terms of indoor occupant satisfaction and thermal and visual comfort in a region with cold climatic conditions. In line with the data obtained, the contribution of passive design techniques to comfort in housing indoor will be revealed.

Design/methodology/approach

In this study, the comfort conditions to be provided in a residence were determined and evaluated in Bingol with the help of questionnaires applied on vernacular and new houses. The information gathered from the occupants and the survey study was mainly designed for three purposes: (i) acquiring general information about houses; (ii) acquiring general information about occupants; and (iii) inquiring about the physical comfort satisfaction of the occupants (thermal comfort and visual comfort).

Findings

Although the average occupant satisfaction in terms of thermal performance in vernacular houses in summer and winter is 3.91, this average is 2.01 for new houses. The average of the general visual comfort of occupants in vernacular houses is 3.59, whereas this rate is 2.63 in new houses. According to the data obtained, occupant satisfaction was higher in vernacular houses than in new houses. In general, the new settlement area is designed and positioned independently of climate and environmental conditions. This situation increases the need to use mechanical systems to provide indoor thermal comfort conditions. The increase in the need for mechanical systems leads to a significant increase in energy expenditures, as well as deterioration of health conditions in places.

Research limitations/implications

To ensure occupant satisfaction, indoor thermal comfort conditions and healthy environments, vernacular houses should be an example for the design and building of new houses in terms of orientation, environment relations, space dimensions and space usage in accordance with the character of the region and material selection.

Originality/value

There has not been a serious research on bioclimatic, socioeconomic and cultural sustainability of the vernacular architecture of Bingol. Therefore, this region has been preferred as the study area.

Details

International Journal of Housing Markets and Analysis, vol. 13 no. 2
Type: Research Article
ISSN: 1753-8270

Keywords

Book part
Publication date: 22 December 2016

Yong Li and Ruzhu Wang

This chapter will introduce three novel technologies demonstrated in Sino-Italian Green Energy Lab of Shanghai Jiao Tong University for the hot summer and cold winter climate zone.

Abstract

Purpose

This chapter will introduce three novel technologies demonstrated in Sino-Italian Green Energy Lab of Shanghai Jiao Tong University for the hot summer and cold winter climate zone.

Methodology/approach

Experimental and modeling works have been conducted on the application of these systems. A comprehensive review on the features of these novel technologies, their adaptability to local climate condition have been carried out, and some initial study results have been reported.

Findings

Solar PV direct-driven air conditioner with grid connection, home used small temperature difference heat pump, smart house energy information and control system are appropriate energy technologies with reduced CO2 emission, which can be applied efficiently in the hot summer and cold winter climate zone. More useful data will be obtained in the future demonstration tests in Sino-Italian Green Energy Lab.

Originality/value

This work shows combining renewable energy technologies and information technologies is crucial to improve the energy efficiency and the comfortableness for indoor environment.

Details

China and Europe’s Partnership for a More Sustainable World
Type: Book
ISBN: 978-1-78635-331-3

Keywords

Open Access
Article
Publication date: 17 December 2018

Mohammad Shakhawat Hossain, Lu Qian, Muhammad Arshad, Shamsuddin Shahid, Shah Fahad and Javed Akhter

Changes in climate may have both beneficial and harmful effects on crop yields. However, the effects will be more in countries whose economy depends on agriculture. This study…

18606

Abstract

Purpose

Changes in climate may have both beneficial and harmful effects on crop yields. However, the effects will be more in countries whose economy depends on agriculture. This study aims to measure the economic impacts of climate change on crop farming in Bangladesh.

Design/methodology/approach

A Ricardian model was used to estimate the relationship between net crop income and climate variables. Historical climate data and farm household level data from all climatic zones of Bangladesh were collected for this purpose. A regression model was then developed of net crop income per hectare against long-term climate, household and farm variables. Marginal impacts of climate change and potential future impacts of projected climate scenarios on net crop incomes were also estimated.

Findings

The results revealed that net crop income in Bangladesh is sensitive to climate, particularly to seasonal temperature. A positive effect of temperature rise on net crop income was observed for the farms located in the areas having sufficient irrigation facilities. Estimated marginal impact suggests that 1 mm/month increase in rainfall and 10°C increase in temperature will lead to about US$4-15 increase in net crop income per hectare in Bangladesh. However, there will be significant seasonal and spatial variations in the impacts. The assessment of future impacts under climate change scenarios projected by Global Circulation Models indicated an increase in net crop income from US$25-84 per hectare in the country.

Research limitations/implications

The findings of this study indicate the need for development practitioners and policy planners to consider both the beneficial and harmful effects of climate change across different climatic zones while designing and implementing the adaptation policies in the country.

Originality/value

Literature survey of the Web of Science, Science Direct and Google Scholar indicates that this study is the first attempt to measure the economic impacts of climate change on overall crop farming sector in Bangladesh using an econometric model.

Details

International Journal of Climate Change Strategies and Management, vol. 11 no. 3
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 1 March 2017

Jian Yao and Rong-Yue Zheng

This paper conducted a study on the energy-saving potential of a developed thermotropic window. Office buildings in different climate regions of China were compared in terms of…

Abstract

This paper conducted a study on the energy-saving potential of a developed thermotropic window. Office buildings in different climate regions of China were compared in terms of heating, cooling and lighting energy demands. Results show that annual heating and cooling energy demands for office buildings differ largely, while lighting energy demand at different climates keeps a significant percentage of the total energy demand, ranging from 36.1% to 66.3%. Meanwhile, thermotropic windows achieve a great advantage in improving daylighting performance and in reducing the overall energy demand, by reducing the overall energy demand by 2.27%-8.7% and 10.1%-21.72%, respectively, compared to movable shading devices and Low-E windows. This means that this kind of thermotropic windows have a great potential in applications in different climatic regions and can be considered as a good substitute of solar shading devices and Low-E windows.

Details

Open House International, vol. 42 no. 1
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 5 April 2024

Fateme Akhlaghinezhad, Amir Tabadkani, Hadi Bagheri Sabzevar, Nastaran Seyed Shafavi and Arman Nikkhah Dehnavi

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to…

Abstract

Purpose

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to simulate occupant behavior has emerged as a potential solution. This study seeks to analyze the performance of free-running households by examining adaptive thermal comfort and CO2 concentration, both crucial variables in indoor air quality. The investigation of indoor environment dynamics caused by the occupants' behavior, especially after the COVID-19 pandemic, became increasingly important. Specifically, it investigates 13 distinct window and shading control strategies in courtyard houses to identify the factors that prompt occupants to interact with shading and windows and determine which control approach effectively minimizes the performance gap.

Design/methodology/approach

This paper compares commonly used deterministic and probabilistic control functions and their effects on occupant comfort and indoor air quality in four zones surrounding a courtyard. The zones are differentiated by windows facing the courtyard. The study utilizes the energy management system (EMS) functionality of EnergyPlus within an algorithmic interface called Ladybug Tools. By modifying geometrical dimensions, orientation, window-to-wall ratio (WWR) and window operable fraction, a total of 465 cases are analyzed to identify effective control scenarios. According to the literature, these factors were selected because of their potential significant impact on occupants’ thermal comfort and indoor air quality, in addition to the natural ventilation flow rate. Additionally, the Random Forest algorithm is employed to estimate the individual impact of each control scenario on indoor thermal comfort and air quality metrics, including operative temperature and CO2 concentration.

Findings

The findings of the study confirmed that both deterministic and probabilistic window control algorithms were effective in reducing thermal discomfort hours, with reductions of 56.7 and 41.1%, respectively. Deterministic shading controls resulted in a reduction of 18.5%. Implementing the window control strategies led to a significant decrease of 87.8% in indoor CO2 concentration. The sensitivity analysis revealed that outdoor temperature exhibited the strongest positive correlation with indoor operative temperature while showing a negative correlation with indoor CO2 concentration. Furthermore, zone orientation and length were identified as the most influential design variables in achieving the desired performance outcomes.

Research limitations/implications

It’s important to acknowledge the limitations of this study. Firstly, the potential impact of air circulation through the central zone was not considered. Secondly, the investigated control scenarios may have different impacts on air-conditioned buildings, especially when considering energy consumption. Thirdly, the study heavily relied on simulation tools and algorithms, which may limit its real-world applicability. The accuracy of the simulations depends on the quality of the input data and the assumptions made in the models. Fourthly, the case study is hypothetical in nature to be able to compare different control scenarios and their implications. Lastly, the comparative analysis was limited to a specific climate, which may restrict the generalizability of the findings in different climates.

Originality/value

Occupant behavior represents a significant source of uncertainty, particularly during the early stages of design. This study aims to offer a comparative analysis of various deterministic and probabilistic control scenarios that are based on occupant behavior. The study evaluates the effectiveness and validity of these proposed control scenarios, providing valuable insights for design decision-making.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 18 April 2023

Sundus Shareef, Emad S. Mushtaha, Saleh Abu Dabous and Imad Alsyouf

This paper investigates thermal mass performance (TMP) in hot climates. The impact of using precast concrete (PC) as a core envelope with different insulation materials has been…

Abstract

Purpose

This paper investigates thermal mass performance (TMP) in hot climates. The impact of using precast concrete (PC) as a core envelope with different insulation materials has been studied. The aim is to find the effect of building mass with different weights on indoor energy consumption, specifically cooling load in hot climates.

Design/methodology/approach

This research adopted a case study and simulation methods to find out the efficiency of different mass performances in hot and humid climate conditions. Different scenarios of light, moderate and heavyweight mass using PC have been developed and simulated. The impact of these scenarios on indoor cooling load has been investigated using the integrated environment solution-virtual environment (IES-VE) software.

Findings

The results showed that adopting a moderate weight mass of two PC sheets and a cavity layer in between can reduce indoor air temperature by 1.17 °C; however, this type of mass may increase the cooling demand. On the other hand, it has been proven that adopting a heavyweight mass for building envelopes and increasing the insulation material has a significant impact on reducing the cooling load. Using a PC Sandwich panel and increasing the insulation material layers for external walls and thickness by 50 mm will reduce the cooling load by 15.8%. Therefore, the heavyweight mass is more efficient compared to lightweight and moderate mass in hot, humid climate areas such as the UAE, in spite of the positive indoor TMP that can be provided by the lightweight mass in reducing the indoor air temperature in the summer season.

Originality/value

This research contributes to the thermal mass concept as one of these strategies that have recently been adopted to optimize the thermal performance of buildings and developments. Efficient TMP can have a massive impact on reducing energy consumption. However, less work has investigated TMP in hot and humid climate conditions. Furthermore, the impact of the PC on indoor thermal performance within hot climate areas has not been studied yet. The findings of this study on TMP in the summer season can be generated in all hot climate zones, and investigating the TMP in other seasons can be extended in future studies.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 March 2022

Juntae Jake Son, Suk-Kyung Kim and M.G. Matt Syal

The purpose of this study is to examine the energy savings in the indoor environment, using strategies that adopt the characteristics of nature, called biomimetic solutions. This…

Abstract

Purpose

The purpose of this study is to examine the energy savings in the indoor environment, using strategies that adopt the characteristics of nature, called biomimetic solutions. This research designed a biomimetic window system to bring daylight into interior spaces in educational buildings where daylight cannot be reached. Specifically, this study assessed how the daylight that was achieved via a biomimetic window system would affect energy savings using an energy simulation method.

Design/methodology/approach

This study explored how biomimetic methods would affect the building environment and which biomimetic method would involve the building's energy saving with daylight. The research intended to develop a novel biomimetic window system that can bring daylight to the basement floor of an existing building on a university campus to find out how much the biomimetic window system would affect the energy savings of the building. Referring to the existing building's layout and structure, energy simulation models were developed, and the energy consumptions were estimated.

Findings

Simulation models proved that the biomimetic window system has sufficient performance to bring more daylight to the basement floor of the building. Furthermore, it was confirmed that the use of the biomimetic window system for the building could reduce energy usage compared to the actual energy usage of the current building without biomimetic windows.

Research limitations/implications

First, this study was adopted as a computer-designed simulation method instead of using a real-world system. Although this study designed the biomimetic window system based on previous studies, it should be considered the possibility of other problems when the system is actually built in. Second, it is necessary to predict how much an initial budget is required when the system is built. It means that this study did not calculate the lifecycle cost of the biomimetic window system. It will also be necessary to compare energy consumption to the required initial budget. Lastly, this study was simulated based on weather data in cold regions, and it did not compare/analyze different climate regions. Different results may be predicted if the biomimetic window system is built in different climatic regions.

Originality/value

This research showed new practical ways to capture and transmit solar heat and light using a biomimetic solution. Furthermore, using the proposed novel biomimetic window system, the amount of energy reduction can be calculated, and this method could be applied in the interior non-window spaces of academic and related types of buildings.

Details

Open House International, vol. 48 no. 1
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 1 December 2017

Sertaç Ilter and S.Müjdem Vural

The double-skin façade (DSF) is one of the most crucial paradigms of building envelope design in last decades. DSF prospects a unified architectural phenomenon based on comfort…

Abstract

The double-skin façade (DSF) is one of the most crucial paradigms of building envelope design in last decades. DSF prospects a unified architectural phenomenon based on comfort rank of building driven by the dogmas of aesthetic-glass façade and practical-natural ventilation aspirations. Therefore, the utilization of DSF has been the most prevalent catalyst for architectural design.

The study discusses to structure a valid evaluation method focusing on DSF elements in order to fragment human comfort standards within asserting an accurate system in the preliminary design stage. The study significantly examines the tools/ways of integrating DSFs' human comfort parameters in contemporary architecture though a convincing design system. Apparently, the study aims to provide a proposed guideline within a established analyzing system for architects in order to better formation of DSF elements; which refers and promote the human comfort standards. The results demonstrate a modest insight on understanding the potentials of DSF elements in the early design stage significantly following defined architectural conceptions; cooling, lighting, thermal, acoustic and visual comfort intensity. Based on obtained data; study aims to enclose a diminutive knowledge or demonstration of how the concept might work for future development of contemporary architecture within DSF area.

Details

Open House International, vol. 42 no. 4
Type: Research Article
ISSN: 0168-2601

Keywords

1 – 10 of over 1000