Search results

1 – 10 of 39
Article
Publication date: 18 October 2022

Reza Amini and Pooneh Kardar

This paper aims to achieve phosphating via optimal features of Mg metal as a suitable base coating, which is considered for other properties such as barrier properties against the…

Abstract

Purpose

This paper aims to achieve phosphating via optimal features of Mg metal as a suitable base coating, which is considered for other properties such as barrier properties against the passage of several factors.

Design/methodology/approach

In this research, in the phosphate bath, immersion time, temperature and the content of sodium nitrite as an accelerator were changed.

Findings

As a result, increasing the immersion time of AZ31 Mg alloy samples in the phosphating bath as well as increasing the ratio of sodium dodecyl sulfate (SDS) concentration to sodium nitrite concentration in the phosphating bath formulation increase the mass of phosphating formed per unit area of the Mg alloy. The results of the scanning electron microscope test showed phosphating is not completely formed in short immersion times, which is a thin and uneven layer.

Research limitations/implications

Mg and its alloys are sensitive to galvanic corrosion, which would lead to generating several holes in the metal. As such, it causes a decrease in mechanical stability as well as an unfavorable appearance.

Practical implications

Mg is used in several industries such as automobile and computer parts, mobile phones, astronaut compounds, sports goods and home appliances.

Social implications

Nevertheless, Mg has high chemical reactivity, so an oxide-hydroxide layer is formed on its surface, which has a harmful effect on the adhesion and uniformity of the coating applied on Mg.

Originality/value

By increasing the ratio of SDS concentration to sodium nitrite concentration in the phosphating bath, the corrosion resistance of the phosphating increases.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 April 2024

Bo Zhang, Yuqian Zheng, Zhiyuan Cui, Dongdong Song, Faqian Liu and Weihua Li

The impact of rolling on the performance of micro arc oxidation (MAO) coatings on ZM5 alloy has been underreported. The purpose of this study is to explore the correlation between…

Abstract

Purpose

The impact of rolling on the performance of micro arc oxidation (MAO) coatings on ZM5 alloy has been underreported. The purpose of this study is to explore the correlation between rolling and the failure mechanism of MAO coatings in greater depth.

Design/methodology/approach

The influence of rolling on the corrosion and wear properties of MAO coating was investigated by phase structure, bond strength test (initial bond strength and wet adhesion), electrochemical impedance spectroscopy and wear test. The change of the surface electrochemical properties was studied by first principles analysis.

Findings

The results showed that the MAO coating on rolled alloy had better corrosion and wear resistance compared to cast alloy, although the structure and component content of two kinds of MAO coating are nearly identical. The difference in interface bonding between MAO coating and Mg substrate is the primary factor contributing to the disparity in performance between the two types of samples. Finally, the impact of the rolling process on MAO coating properties is explained through first-principle calculation.

Originality/value

A comprehensive explanation of the impact of the rolling process on MAO coating properties will provide substantial support for enhancing the application of Mg alloy anticorrosion.

Graphical abstract

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 April 2024

Vahid Ahmadi, Seyed Mohammad Ali Hosseini, Effat Jamalizadeh and Razie Naghizade

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on…

Abstract

Purpose

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on 7075 aluminum alloy in 3.5% NaCl solution.

Design/methodology/approach

Aluminum alloys were dipped into ceria sol and ceria sol modified by ZnO nanoparticles separately and removed after 10 min from the solutions and dried at 110°C for 30 min and heated at 500 °C for 30 min to form the coatings. The coatings have been characterized by using field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The EIS tests were performed in a corrosive solution of 3.5% NaCl.

Findings

The results showed that the coating of ceria sol modified by ZnO nanoparticles has higher corrosion resistance than the ceria sol coating and the bare sample. Also, the best efficiency is related to aluminum sample immersion after 1 h in NaCl corrosive solution for coating modified by ZnO nanoparticles.

Originality/value

In this research, the modification of ceria sol coating by ZnO nanoparticles had an effect on improving the corrosion behavior of aluminum alloy. It is also understood that modification of coatings is an effective parameter on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 April 2024

Naveen Srinivas Madugula, Yogesh Kumar, Vimal K.E.K and Sujeet Kumar

The purpose of this paper is to improve the productivity and quality of the wire arc additive manufacturing process by benchmarking the strategies from the selected six…

Abstract

Purpose

The purpose of this paper is to improve the productivity and quality of the wire arc additive manufacturing process by benchmarking the strategies from the selected six strategies, namely, heat treatment process, inter pass cooling process, inter pass cold rolling process, peening process, friction stir processing and oscillation process.

Design/methodology/approach

To overcome the lack of certainty associated with correlations and relationships in quality functional deployment, fuzzy numbers have been integrated with the quality functional deployment framework. Twenty performance measures have been identified from the literature under five groups, namely, mechanical properties, physical properties, geometrical properties, cost and material properties. Using house of quality weights are allocated to performance measures and groups, relationships are established between performance measures and strategies, and correlations are assigned between strategies. Finally, for each strategy, relative importance, score and crisp values are calculated.

Findings

Inter pass cold rolling process strategy is computed with the highest crisp value of 15.80 which is followed by peening process, heat treatment process, friction stir processing, inter pass cooling process,] and oscillation process strategy.

Originality/value

To the best of the authors’ knowledge, there has been no research in the literature that analyzes the strategies to improve the quality and productivity of the wire arc additive manufacturing process.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 April 2024

Xu Yang, Xin Yue, Zhenhua Cai and Shengshi Zhong

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Abstract

Purpose

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Design/methodology/approach

The complex workpiece surfaces in the project are first divided by triangular meshing. Then, the geodesic curve method is applied for local path planning. Finally, the subsurface trajectory combination optimization problem is modeled as a GTSP problem and solved by the ant colony algorithm, where the evaluation scores and the uniform design method are used to determine the optimal parameter combination of the algorithm. A global optimized spraying trajectory is thus obtained.

Findings

The simulation results show that the proposed processes can achieve the shortest global spraying trajectory. Moreover, the cold spraying experiment on the IRB4600 six-joint robot verifies that the spraying trajectory obtained by the processes can ensure a uniform coating thickness.

Originality/value

The proposed processes address the issue of different parameter combinations, leading to different results when using the ant colony algorithm. The two methods for obtaining the optimal parameter combinations can solve this problem quickly and effectively, and guarantee that the processes obtain the optimal global spraying trajectory.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 10 October 2022

P.C. Sarkar, Ammayappan Lakshmanan and Niranjan Kumar

The purpose of this study is to enhance the functional properties of Hessian fabric through resin finishing. Hessian bags made of lignocellulosic jute fiber are commonly used to…

Abstract

Purpose

The purpose of this study is to enhance the functional properties of Hessian fabric through resin finishing. Hessian bags made of lignocellulosic jute fiber are commonly used to pack, store and transport agro-commodities, including horticultural crops such as rice, potato, onion and wheat. However, because of high water affinity, these bags undergo degradation in properties due to moisture release by the stored commodities themselves. Exposure to natural elements, e.g. rain and dew, also causes moisture absorption in hessian bags. Once the bag gets moistened, degradation of jute bags starts due to microbial attack, leading to loss in tensile strength and change in extensibility, leading to ultimate breakage in warp and weft directions of the fabric.

Design/methodology/approach

To overcome the degradation in the functional properties of hessian fabric due to exposure to moisture and microbial attack, the application of semi-synthetic polymeric materials was carried out.

Findings

Tenacity, bursting strength, puncture resistance, tear strength and breaking load, as well as life cycle of resin-treated jute fabric was found to be better than control jute.

Originality/value

To the best of the authors’ knowledge, no recent reports of resin finishing on jute (hessian) fabric with semi-synthetic resins are presently available, other than coating with rubber.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 November 2022

Youssef L. Nashed, Fouad Zahran, Mohamed Adel Youssef, Manal G. Mohamed and Azza M. Mazrouaa

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic…

Abstract

Purpose

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic polymer.

Design/methodology/approach

Applying free radical polymerization, an acrylate terpolymer emulsion that a surfactant had stabilized was created. A thermogravimetric analysis, minimum film-forming temperature, Fourier transform infrared spectroscopy and particle size distribution are used to characterize the prepared eco-friendly water base acrylate terpolymer emulsion. Using three different percentages of the acrylate terpolymer emulsion produced, 35%, 45% and 55%, the anti-carbonation coating was formed. Tensile strength, tensile strain, elongation, crack-bridging ability, carbon dioxide permeability, chloride ion diffusion, average pull-off adhesion strength, water vapor transmission, gloss, wet scrub resistance, QUV/weathering and storage stability are the characteristics of the anti-carbonation coating.

Findings

The formulated acrylate terpolymer emulsion enhances anti-carbonation coating performance in CO2 permeability, Cl-diffusion, crack bridging, pull-off adhesion strength and water vapor transmission. The formed coating based on the formulated acrylate terpolymer emulsion performed better than its commercial counterpart.

Practical implications

To protect the steel embedded in concrete from corrosion and increase the life span of concrete, the surface of cement is treated with an anti-carbonation coating based on synthetic acrylate terpolymer emulsion.

Social implications

In addition to saving lives from building collapse, it maintains the infrastructure for the long run.

Originality/value

The anti-carbonation coating, which is based on the synthetic acrylate terpolymer emulsion, is environmentally benign and stops the entry of carbon dioxide and chlorides, which are the main causes of steel corrosion in concrete.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 November 2022

Pooneh Kardar and Reza Amini

The purpose of this paper is to study the correlation between different topographies and the reaction of Ulva Linza fouling species.

Abstract

Purpose

The purpose of this paper is to study the correlation between different topographies and the reaction of Ulva Linza fouling species.

Design/methodology/approach

In this research, topographies with a different method, such as hot embossing and hot pulling, were achieved, and biological analyses were done with macroalgae Ulva Linza cells. The effect of topography via local binding geometry (honeycomb size gradients) and Wenzel roughness on the settling of Ulva microorganisms was tested.

Findings

As a result, Ulva spores confirmed different reactions to a similar set of tapered microstructures that was in agreement with the results on distinct honeycombs. The local binding geometry and the Wenzel roughness factor “r” were dominant on settling of Ulva Linza spores.

Research limitations/implications

The reaction of an organism at the interface of vehicles’ substrate is powerfully affected by surface topographies.

Practical implications

The best embedment occurred on structures with bigger sizes than Ulva Linza’s spores. The density of settled spores was proportional to Wenzel roughness and the spores favour to attach to “kink sites” positions.

Social implications

Unfortunately, unpleasant aggregation of marine biofouling on marine vehicles’ surfaces, generate terrific difficulties in the relevant industry.

Originality/value

There was a sharp relationship between Wenzel roughness and settle of Ulva Linza spores. The local binding geometry and the Wenzel roughness factor “r” were dominant on settling of Ulva Linza spores.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 June 2023

Nitin Pangarkar and Rohit Prabhudesai

This paper argues that when incumbent firms counter disruptive threats head-on, they may fail to develop the required new skills. This paper aims to propose an adjacent strategy…

Abstract

Purpose

This paper argues that when incumbent firms counter disruptive threats head-on, they may fail to develop the required new skills. This paper aims to propose an adjacent strategy which proved useful to Fujifilm to counter disruption of its core business of manufacturing photographic film.

Design/methodology/approach

The study uses an inductive methodology. Based on a detailed case study of Fujifilm, the study proposes two frameworks: for the conditions under which an adjacent strategy is likely to be fruitful and how firms can make the strategy work in their organizations.

Findings

The study finds that an adjacent strategy can be useful to firms under specific circumstances. Not only will the strategy help to counter decline in the core business, but it will also open up new avenues of growth. The success of the strategy requires significant efforts in aligning the leadership and the organization, however.

Practical implications

The frameworks proposed in the study can be useful to incumbent firms in many industries as they battle new disruptive business models and players.

Originality/value

The study’s key argument that incumbent firms can leverage skills from their core business is novel. The study also proposes frameworks that can help firms decide whether an adjacent strategy is appropriate for them and how they can implement it.

Details

Journal of Business Strategy, vol. 45 no. 3
Type: Research Article
ISSN: 0275-6668

Keywords

1 – 10 of 39