Search results

1 – 10 of 189
Article
Publication date: 26 September 2022

Amirul Syafiq, Nasrudin Abd. Rahim, Vengadaesvaran Balakrishnan and A.K. Pandey

This paper introduced the simple synthesis process of self-cleaning coating with fog-resistance property using hydrophobic polydimethylsiloxane (PDMS) polymer and nano-calcium…

Abstract

Purpose

This paper introduced the simple synthesis process of self-cleaning coating with fog-resistance property using hydrophobic polydimethylsiloxane (PDMS) polymer and nano-calcium carbonate (nano-CaCO3) and titanium dioxide (TiO2).

Design/methodology/approach

The synthesis method of PDMS/nano-CaCO3-TiO2 is based on sol-gel process. The crosslinking between PDMS and nanoparticles is driven by the covalent bond at temperature of 50°C. The 3-Aminopropyltriethoxysilane is used as binder for nanoparticles attachment in polymer matrix. Two fabrication methods are used, which are dip- and spray-coating methods.

Findings

The prepared coated glass fulfilled the requirement of standard self-cleaning and fog-resistance performance. For the self-cleaning test BS EN 1096-5:2016, the coated glasses exhibited the dust haze value around 20%–25% at tilt angle of 10°. For the antifog test, the coated glasses showed the fog haze value were below 2% and the gloss value were above 85%. The obtained results completely achieved the standard antifog value ASTM F659-06 protocol.

Research limitations/implications

Findings will provide an infrastructure support for the building glass to enhance building’s energy efficiency, cleaning performance and friendly environment.

Practical implications

This study proposed the simple synthesis method using hydrophobic polymer and nano-CaCO3 and nano-TiO2, which can achieve optimum self-cleaning property at low tilt angle and fog-resistance performance for building glass.

Social implications

The research findings have high potential for building company, cleaning building company and government sector. The proposed project capable to reduces the energy consumption about 20% per annum due to labor cost, time-consuming and safety during manual cleaning.

Originality/value

The novel method to develop self-cleaning coating with fog-resistance using simple synthesis process and fabrication method for building glass application.

Article
Publication date: 17 April 2024

Jian Sun, Zhanshuai Fan, Yi Yang, Chengzhi Li, Nan Tu, Jian Chen and Hailin Lu

Aluminum alloy is considered an ideal material in aerospace, automobile and other fields because of its lightweight, high specific strength and easy processing. However, low…

Abstract

Purpose

Aluminum alloy is considered an ideal material in aerospace, automobile and other fields because of its lightweight, high specific strength and easy processing. However, low hardness and strength of the surface of aluminum alloys are the main factors that limit their applications. The purpose of this study is to obtain a composite coating with high hardness and lubricating properties by applying GO–PVA over MAO coating.

Design/methodology/approach

A pulsed bipolar power supply was used as power supply to prepare the micro-arc oxidation (MAO) coating on 6061 aluminum sample. Then a graphene oxide-polyvinyl alcohol (GO–PVA) composite coating was prepared on MAO coating for subsequent experiments. Samples were characterized by Fourier infrared spectroscopy, X-ray diffraction, Raman spectroscopy and thermogravimetric analysis. The friction test is carried out by the relative movement of the copper ball and the aluminum disk on the friction tester.

Findings

Results showed that the friction coefficient of MAO samples was reduced by 80% after treated with GO–PVA composite film.

Originality/value

This research has made a certain contribution to the surface hardness and tribological issues involved in the lightweight design of aluminum alloys.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0427/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 October 2022

Reza Amini and Pooneh Kardar

This paper aims to achieve phosphating via optimal features of Mg metal as a suitable base coating, which is considered for other properties such as barrier properties against the…

Abstract

Purpose

This paper aims to achieve phosphating via optimal features of Mg metal as a suitable base coating, which is considered for other properties such as barrier properties against the passage of several factors.

Design/methodology/approach

In this research, in the phosphate bath, immersion time, temperature and the content of sodium nitrite as an accelerator were changed.

Findings

As a result, increasing the immersion time of AZ31 Mg alloy samples in the phosphating bath as well as increasing the ratio of sodium dodecyl sulfate (SDS) concentration to sodium nitrite concentration in the phosphating bath formulation increase the mass of phosphating formed per unit area of the Mg alloy. The results of the scanning electron microscope test showed phosphating is not completely formed in short immersion times, which is a thin and uneven layer.

Research limitations/implications

Mg and its alloys are sensitive to galvanic corrosion, which would lead to generating several holes in the metal. As such, it causes a decrease in mechanical stability as well as an unfavorable appearance.

Practical implications

Mg is used in several industries such as automobile and computer parts, mobile phones, astronaut compounds, sports goods and home appliances.

Social implications

Nevertheless, Mg has high chemical reactivity, so an oxide-hydroxide layer is formed on its surface, which has a harmful effect on the adhesion and uniformity of the coating applied on Mg.

Originality/value

By increasing the ratio of SDS concentration to sodium nitrite concentration in the phosphating bath, the corrosion resistance of the phosphating increases.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 January 2024

Qiang Sun, Quantong Jiang, Siwei Wu, Chang Liu, Heng Tang, L. Song, Hao Shi, Jizhou Duan and BaoRong Hou

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large…

Abstract

Purpose

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large concentration gradient.

Design/methodology/approach

The macroscopic and microscopic morphology, thickness, surface roughness, chemical composition and structure of the coating were characterized by different characterization methods. The corrosion resistance of the film was studied by electrochemical and scanning Kelvin probe force microscopy. The results show that the addition of ZnO can significantly improve the compactness and corrosion resistance of the MAO coating, but the high concentration of ZnO will cause microcracks, which will reduce the corrosion resistance to a certain extent.

Findings

When the concentration of zinc oxide is 8 g/L, the compactness and corrosion resistance of the coating are the best, and the thickness of the coating is positively correlated with the concentration of ZnO.

Research limitations/implications

Too high concentration of ZnO reduces the performance of MAO coating.

Practical implications

The MAO coating prepared by adding ZnO has good corrosion resistance. Combined with organic coatings, it can be applied in corrosive marine environments, such as ship parts and hulls. To a certain extent, it can reduce the economic loss caused by corrosion.

Originality/value

The effect of ZnO on the corrosion resistance of MAO coating in electrolyte solution was studied systematically, and the conclusion was new to the common knowledge.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 March 2024

Chao Li, Jin Gao, Qingqing Xu, Chao Li, Xuemei Yang, Kui Xiao and Xiangna Han

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a…

Abstract

Purpose

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a new type of sealing coating to mitigate the impact of ultraviolet (UV) light on color painting.

Design/methodology/approach

The new coating was subjected to a 500-h UV-aging test. Compared with the existing acrylic resin Primal AC33, the UV aging behavior of the new coating, such as color difference and gloss, was studied with aging time. The Fourier infrared spectra of the coatings were analyzed after the UV-aging test.

Findings

Compared with AC33, the antiaging performance of SF8 was substantially improved. SF8 has a lower color difference value and better light retention and hydrophobicity. The Fourier transform infrared spectroscopy results showed that the C-F bond and Si-O bonds in the resin of the optimized sealing coating protected the main chain C-C structure from degradation during the aging process; thus, the resin maintained good stability. The hindered amine light stabilizer TN292 added to the coating inhibited the antiaging process by trapping active free radicals.

Originality/value

To address the problem of UV aging of oil-decorated colored paintings, a new type of sealing coating with excellent antiaging properties was developed, laying the foundation for its demonstration application on the surface of ancient buildings.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 September 2023

Thameem Hayath Basha, Sivaraj Ramachandran and Bongsoo Jang

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes…

Abstract

Purpose

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes requires a deep understanding of thermophysical behavior, rheology and complex chemical reactions. The manufacturing flow processes for these coatings are intricate and involve heat and mass transfer phenomena. Magnetic nanoparticles are being used to create intelligent coatings that can be externally manipulated, making them highly desirable. In this study, a Keller box calculation is used to investigate the flow of a coating nanofluid containing a viscoelastic polymer over a circular cylinder.

Design/methodology/approach

The rheology of the coating polymer nanofluid is described using the viscoelastic model, while the effects of nanoscale are accounted for by using Buongiorno’s two-component model. The nonlinear PDEs are transformed into dimensionless PDEs via a nonsimilar transformation. The dimensionless PDEs are then solved using the Keller box method.

Findings

The transport phenomena are analyzed through a comprehensive parametric study that investigates the effects of various emerging parameters, including thermal radiation, Biot number, Eckert number, Brownian motion, magnetic field and thermophoresis. The results of the numerical analysis, such as the physical variables and flow field, are presented graphically. The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as fluid parameter increases. An increase in mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid.

Practical implications

Intelligent materials rely heavily on the critical characteristic of viscoelasticity, which displays both viscous and elastic effects. Viscoelastic models provide a comprehensive framework for capturing a range of polymeric characteristics, such as stress relaxation, retardation, stretching and molecular reorientation. Consequently, they are a valuable tool in smart coating technologies, as well as in various applications like supercapacitor electrodes, solar collector receivers and power generation. This study has practical applications in the field of coating engineering components that use smart magnetic nanofluids. The results of this research can be used to analyze the dimensions of velocity profiles, heat and mass transfer, which are important factors in coating engineering. The study is a valuable contribution to the literature because it takes into account Joule heating, nonlinear convection and viscous dissipation effects, which have a significant impact on the thermofluid transport characteristics of the coating.

Originality/value

The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as the fluid parameter increases. An increase in the mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid. Increasing the strength of the magnetic field promotes an increase in the density of the streamlines. An increase in the mixed convection parameter results in a decrease in the isotherms and isoconcentration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 January 2024

Dexin Chen, Hongyuan He, Zhixin Kang and Wei Li

This study aims to review the current one-step electrodeposition of superhydrophobic coatings on metal surfaces.

Abstract

Purpose

This study aims to review the current one-step electrodeposition of superhydrophobic coatings on metal surfaces.

Design/methodology/approach

One-step electrodeposition is a versatile and simple technology to prepare superhydrophobic coatings on metal surfaces.

Findings

Preparing superhydrophobic coatings by one-step electrodeposition is an efficient method to protect metal surfaces.

Originality/value

Even though there are several technologies, one-step electrodeposition still plays a significant role in producing superhydrophobic coatings.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 February 2024

Umesh Mahajan and S.T. Mhaske

This study aims to focus on how reactive diluents with mono- and di-functionalities affect the properties of resin formulation developed from bioderived precursors. A hydroxyethyl…

Abstract

Purpose

This study aims to focus on how reactive diluents with mono- and di-functionalities affect the properties of resin formulation developed from bioderived precursors. A hydroxyethyl methacrylate (HEMA) terminated urethane acrylate oligomer was synthesized and characterized to study its application in stereolithography 3D printing with different ratios of isobornyl acrylate and hexanediol diacrylate.

Design/methodology/approach

Polyester polyol was synthesized from suberic acid and butanediol. Additionally, isophorone diisocyanate, polyester polyol and HEMA were used to create urethane acrylate oligomer. Fourier transform infrared spectroscopy and 1H NMR were used to characterize the polyester polyol and oligomer. Various formulations were created by combining oligomer with reactive diluents in concentrations ranging from 0% to 30% by weight and curing with ultraviolet (UV) radiation. The cured coatings and 3D printed specimens were then evaluated for their properties.

Findings

The findings revealed an improvement in thermal stability, contact angle value, tensile strength and surface properties of the product which indicated its suitability for use as a 3D printing material.

Originality/value

This study discusses how oligomers that have been cured by UV radiation with mono- and difunctional reactive diluents give excellent coating characteristics and demonstrate suitability and stability for 3D printing applications.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 February 2024

Thien Vuong Nguyen, Vy Do Truc, Tuan Anh Nguyen and Dai Lam Tran

This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First…

32

Abstract

Purpose

This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First, cerium nitrate inhibitors are absorbed on the surface of various oxide nanoparticles. Thereafter, epoxy nanocomposite coatings have been fabricated on carbon steel substrate using these oxide@Ce nanoparticles as both nano-fillers and nano-inhibitors.

Design/methodology/approach

To evaluate the impact of oxides@Ce nanoparticles on mechanical properties of epoxy coating, the abrasion resistance and impact resistance of epoxy coatings have been examined. To study the impact of oxides@Ce nanoparticles on anti-corrosion performance of epoxy coating for steel, the electrochemical impedance spectroscopy has been carried out in 3% NaCl solution.

Findings

ZnO@Ce3+ and SiO2@Ce3+ nanoparticles provide more enhancement in the epoxy pore network than modification of the epoxy/steel interface. Whereas, Fe2O3@Ce3+ nanoparticles have more to do with modification of the epoxy/steel interface than to change the epoxy pore network.

Originality/value

Incorporation of both oxide nanoparticles and inorganic inhibitor into the epoxy resin is a promising approach for enhancing the anti-corrosion performance of carbon steel.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 February 2024

Shuliu Wang, Qianqian Liu, Jin Wang, Nana Chen, JunHang Chen, Jialiang Song, Xin Zhang and Kui Xiao

This study aims to investigate the role of aluminium (Al) in marine environment and the corrosion mechanism of galvalume coatings by conducting accelerated experiments and data…

Abstract

Purpose

This study aims to investigate the role of aluminium (Al) in marine environment and the corrosion mechanism of galvalume coatings by conducting accelerated experiments and data analysis.

Design/methodology/approach

Samples were subjected to accelerated corrosion for 136 days via salt spray tests to simulate the natural conditions of marine environment and consequently accelerate the experiments. Subsequently, the samples were examined using various test methods, such as EDS, scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS), and the obtained data were analysed.

Findings

Galvalume coatings comprised interdigitated zinc (Zn)-rich and dendritic Al-rich phases. Corrosion was observed to begin with a Zn-rich phase. The primary components of the corrosion product film were Al2O3 and Zn5(OH)8Cl2·H2O. It was confirmed that the role of Al was to form a dense protective film, thereby successfully blocking the entry of corrosive media and protecting the iron substrate.

Originality/value

This study provides a clearer understanding of the corrosion mechanism and kinetics of galvalume coatings in a simulated marine environment. In addition, the role of Al, which is rarely mentioned in the literature, was investigated.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 189