Search results

1 – 10 of 255
Article
Publication date: 12 January 2024

Gobikannan Tamilmani, Venkhatesan D., Santhosh P., Tamilselvan M., Suryappa Jayappa Pawar and Amin Hirenbhai Navinbhai

This paper aims to study the combination of photochromic microcapsules, which use the ultraviolet (UV) rays for colour changing phenomena, and titanium oxide (TiO2) nanoparticles…

71

Abstract

Purpose

This paper aims to study the combination of photochromic microcapsules, which use the ultraviolet (UV) rays for colour changing phenomena, and titanium oxide (TiO2) nanoparticles (NPs), which block the UV rays by their photocatalytic activity in the sunlight on the cotton fabric.

Design/methodology/approach

The TiO2 NPs mixed with photochromic printing paste are used for coating on cotton fabric and further curing is performed in a one-step process. The photochromic pigment printed fabric impregnated in a liquid solution is processed in a two-step process with two variables such as 1% TiO2 and 2% TiO2. The characterization of samples was done with a UV transmittance analyser, surface contact angle, antimicrobial test and fabric physical properties.

Findings

The UV protection of TiO2-treated photochromic printed fabric was high and gives the ultraviolet protection factor rating of 2,000 which denotes almost maximum blocking of UV rays. The antibacterial activity of the one-step samples shows the highest 36 mm zone of inhibition (ZOI) against S. aureus (gram-positive) and 32 mm ZOI against E. coli (gram-negative) bacteria. The one-step sample shows the highest static water contact angle of 118.6° representing more hydrophobicity, whereas the untreated fabric is fully wetted (0.4°). In two-step processes, as the concentration of TiO2 increased, the antibacterial activity, UV blocking and hydrophobicity became better.

Originality/value

This work achieves the multifunctional finishes by using photochromic microcapsules and NPs in a single process as a first attempt. The results inferred that one-step sample has achieved higher values in most of the tests conducted when compared to all other sample.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 April 2023

Markus Polzer, Marcel Bartz, Benedict Rothammer, Edgar Schulz and Sandro Wartzack

The curved and tribologically highly stressed surfaces of bearing components pose a major challenge for steel alloys or tribological resistant coatings like tetrahedral amorphous…

Abstract

Purpose

The curved and tribologically highly stressed surfaces of bearing components pose a major challenge for steel alloys or tribological resistant coatings like tetrahedral amorphous carbon (ta-C) coatings which in particular have an increased risk of delamination due to the significantly increased residual stresses. A possibility to prevent coating failure is the use of dopants while maintaining or even increasing tribological properties. This study aims to compare the tribological behavior of several doped diamond-like-carbon coatings with an undoped ta-C coating under varying slip conditions and Hertzian pressure up to 1800 MPa.

Design/methodology/approach

For this purpose, the tribological behavior was studied using of a ball-on-disc tribometer and a two-disc test rig under mixed/boundary conditions. The tests were conducted with coated specimens against uncoated 100Cr6 steel. Additionally, the influence of lubrication additives was studied due to the use of two fully formulated PAO-based oils, one without and one with molybdenum containing additives. The friction was measured in situ, and the wear was analyzed trough laser scanning microscopy and tactile measurement.

Findings

It was shown that the use of doped ta-C coatings exhibited a tendency for a more favorable tribological behavior compared to undoped ta-C coatings, with no general dependence on the lubricants used. The use of the most suitable coatings reduced the wear of the steel counter-body considerably.

Originality/value

To the best of the authors’ knowledge, this is the first approach of testing the tribological behavior of these doped ta-C coatings, developed for friction efficiency, in dependency on lubrication additives under the given load collective. The approach is relevant to determine whether the friction reduction and the wear inhibition of these coatings are suitable for higher contact pressures and load cycles.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0336/

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Abstract

Details

Pigment & Resin Technology, vol. 52 no. 3
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 31 December 2018

A. Syafiq, A.K. Pandey, Vengadaesvaran Balakrishnan and Nasrudin Abd Rahim

The paper aims to investigate the effect of Degussa P-25 Titanium Dioxide (TiO2) nanoparticles on hydrophobicity and self-cleaning ability as a single organic coating on glass…

Abstract

Purpose

The paper aims to investigate the effect of Degussa P-25 Titanium Dioxide (TiO2) nanoparticles on hydrophobicity and self-cleaning ability as a single organic coating on glass substrate.

Design/methodology/approach

Two methods have been used to enhance the hydrophobicity on glass substrates, namely, surface modification by using low surface energy isooctyltrimethoxysilane (ITMS) solution and construction of rough surface morphology using Degussa P-25 TiO2 nanoparticles with simple bottom-up approach. The prepared sol was applied onto glass substrate using dip-coating technique and stoved in the vacuum furnace 350°C.

Findings

The ITMS coating with nano TiO2 pigment has modified the glass substrate surface by achieving the water contact angle as high as 169° ± 2° and low sliding angle of 0° with simple and low-cost operation. The solid and air phase interface has created excellent anti-dirt and self-cleaning properties against dilute ketchup solution, mud and silicon powder.

Research limitations/implications

Findings will be useful in the development of self-cleaning and anti-dirt coating for photovoltaic panels.

Practical implications

Sol method provides the suitable medium for the combination of organic–inorganic network to achieve high superhydrophobicity and optimum self-cleaning ability.

Originality/value

Application of blended organic–inorganic sol as self-cleaning and anti-dirt coating film.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 February 2022

Lokesh Gupta and Rakesh Kumar

Natural good-quality sources of aggregates are depleting, whereas large amount of reclaimed asphalt pavement (RAP) is produced annually. Safe disposal and use of RAP in the cold…

Abstract

Purpose

Natural good-quality sources of aggregates are depleting, whereas large amount of reclaimed asphalt pavement (RAP) is produced annually. Safe disposal and use of RAP in the cold in-place recycling (CIR) using foamed bitumen could be sustainable approach where milling and mixing operations are accomplished simultaneously. This will not only help in minimizing contamination (probability) and transportation cost but also reduces the carbon footprints. Therefore, this study aims to investigate the scope of RAP utilization up to 100% and further its effect on the behavior of reclaimed asphalt foamed bituminous mix.

Design/methodology/approach

Reclaimed asphalt foamed bituminous mix (FBM) is still a new technique. The evidence of performance of 100% recycled pavement (CIR) is only anecdotal and lacks in systematic guidelines and literatures. Foam binder coating around the aggregates is also a concern. Therefore, this study is mainly emphasized to investigate the scope of RAP use in the FBM up to 100%. RAP content is varied in each trial, i.e. 70, 85, 100 and 0% (only fresh aggregates), to make the FBM. RAP use and its effect on the behavior of FBM in terms of resilient modulus, variation in resilient modulus with curing, rutting performance and the potential of resistance against the moisture damage are addressed.

Findings

Considering the laboratory studies, it can be accomplished that mechanistic properties and performance of FBM are largely influenced by RAP material and portray less susceptible characteristics against the moisture damage. FBM containing 70% RAP content exhibits maximum resilient modulus. However, use of RAP up to 100% in FBM is satisfying the minimum required specification.

Originality/value

Overall, the study may be helpful to highway professionals and could generate another possible option of 100% RAP replacing fresh aggregates in the flexible pavements.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 December 2023

Ziru Zhou, Songlin Zheng, Jiahuan Chen, Ting Zhang, Zhen He and Yuxin Wang

The high specific strength makes magnesium alloys have a wide range of applications in aerospace, military, automotive, marine and construction industries. However, its poor…

Abstract

Purpose

The high specific strength makes magnesium alloys have a wide range of applications in aerospace, military, automotive, marine and construction industries. However, its poor corrosion resistance and weldability have limited its development and application. Friction stir welding (FSW) can effectively avoid the defects of fusion welding. However, the microstructure, mechanical properties and corrosion behavior of FSW joints in magnesium alloys vary among different regions. The purpose of this paper is to review the corrosion of magnesium alloy FSW joints, and to summarize the protection technology of welded joints.

Design/methodology/approach

The corrosion of magnesium alloy FSW joints includes electrochemical corrosion and stress corrosion. This paper summarizes corrosion protection techniques for magnesium alloys FSW joints, focusing on composition, microstructure changes and surface treatment methods.

Findings

Currently, this research is mainly focused on enhancing the corrosion resistance of magnesium alloy FSW joints by changing compositions, structural modifications and surface coating technologies. Refinement of the grains can be achieved by adjusting welding process parameters, which in turn minimizes the effects of the second phase on the alloy’s corrosion resistance.

Originality/value

This paper presents a comprehensive review on the corrosion and protection of magnesium alloys FSW joints, covering the latest research advancements and practical applications. It aims to equip researchers with a better insight into the field and inspire new studies on this topic.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 February 2023

Mehmet Altuğ

The purpose of this study was conducted at an enterprise that produces fasteners and is one of the leading companies in the sector in terms of market share. Possible defects in…

Abstract

Purpose

The purpose of this study was conducted at an enterprise that produces fasteners and is one of the leading companies in the sector in terms of market share. Possible defects in the coating of bolts and nuts either lead to products being scrapped or all of the coating process being repeated from beginning to end. In both cases, the enterprise faces a waste of time and excessive costs. Through this project, the six sigma theory and its means were effectively used to improve the efficiency and quality management of the company. The selection of the six sigma project has also contributed to the creation of various documents to be used for project screening and evaluation of financial results.

Design/methodology/approach

Six sigma is an optimization strategy that is used to improve the profitability of businesses, avoid waste, scrap and losses, reduce costs and improve the effectiveness of all activities to meet or exceed customers’ needs and expectations. Six sigma’s process improvement model, known as Definition-Measurement-Analysis-Improvement-Control, contributes to the economic and technical achievements of businesses. The normal distribution of a process should be within ±3 sigma of the mean. This represents a scale of 99.7% certainty. However, improving the process through the utilization of the six sigma rule, which accepts normal variabilities of processes twice as strict, will result in an error rate of 3.4 per million instead of 2,700 per million for each product or service.

Findings

Using six sigma practices to reduce the costs associated with low quality and to increase economic added value became a cultural practice. With this, the continuation of six sigma practices throughout the Company was intended. The annual cost reduction achieved with the utilization of six sigma practices can be up to $21,780. When time savings are also considered, a loss reduction of about $30,000 each year can be achieved. The coating thickness efficiency increased from 85% to 95% after the improvements made through the six sigma project. There is a significant increase in the efficiency of coating thickness. In addition, the coating thickness efficiency is also close to the target value of 95%–97%.

Originality/value

The results of the study were optimized with the help of deep learning. The performance of the model created in deep learning was quite close to the actual performance. This result implicates the validity of the improvement work. The results may act as a guide for the use of deep learning in new projects.

Details

International Journal of Lean Six Sigma, vol. 14 no. 7
Type: Research Article
ISSN: 2040-4166

Keywords

Open Access
Article
Publication date: 30 August 2023

Chiara Luisa Cantu and Annalisa Tunisini

The research question is how can a company implement a circular innovation in a supply network context? Leveraging the main conceptual and interpretative models of the industrial…

1209

Abstract

Purpose

The research question is how can a company implement a circular innovation in a supply network context? Leveraging the main conceptual and interpretative models of the industrial marketing and purchasing thinking, this study aims to investigate the interplay between the process of circular innovation development and the changes in the structure and dynamics of the supply network in which innovation takes place.

Design/methodology/approach

This research applies a case study design focusing on participant interaction dynamics. The case relates to an industrial company producing an innovative coating solution for compostable packaging. The data used to develop the case study came from multiple sources but primarily from semistructured interviews that cover the implementation of the circular innovation and the configuration of the circular network.

Findings

The dynamics of interconnected relationships can configure a circular network that interconnects business and non business actors through vertical, horizontal and heterogeneous relationships. The network configuration is supported by the new mobilizer actor that facilitates the sharing of circular knowledge within the circular network, together with the sharing of a market orientation and entrepreneurial orientation within the supply network, through the educational learning path.

Originality/value

This paper aims to contribute to a new understanding of how circular innovation can be developed, adopted and diffused. In a network, when circular innovation takes place, the focal issue is not the new product or technology in itself but how such innovation is developed and implemented by and through the reconfiguration of the business and non-business relationships into circular network.

Details

Journal of Business & Industrial Marketing, vol. 38 no. 13
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 22 February 2024

Thien Vuong Nguyen, Vy Do Truc, Tuan Anh Nguyen and Dai Lam Tran

This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First…

36

Abstract

Purpose

This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First, cerium nitrate inhibitors are absorbed on the surface of various oxide nanoparticles. Thereafter, epoxy nanocomposite coatings have been fabricated on carbon steel substrate using these oxide@Ce nanoparticles as both nano-fillers and nano-inhibitors.

Design/methodology/approach

To evaluate the impact of oxides@Ce nanoparticles on mechanical properties of epoxy coating, the abrasion resistance and impact resistance of epoxy coatings have been examined. To study the impact of oxides@Ce nanoparticles on anti-corrosion performance of epoxy coating for steel, the electrochemical impedance spectroscopy has been carried out in 3% NaCl solution.

Findings

ZnO@Ce3+ and SiO2@Ce3+ nanoparticles provide more enhancement in the epoxy pore network than modification of the epoxy/steel interface. Whereas, Fe2O3@Ce3+ nanoparticles have more to do with modification of the epoxy/steel interface than to change the epoxy pore network.

Originality/value

Incorporation of both oxide nanoparticles and inorganic inhibitor into the epoxy resin is a promising approach for enhancing the anti-corrosion performance of carbon steel.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 March 2024

Gülçin Baysal

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Abstract

Purpose

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Design/methodology/approach

The integration levels of the sensors studied with the textile materials are changing. Some research teams have used a combination of printing and textile technologies to produce sensors, while a group of researchers have used traditional technologies such as weaving and embroidery. Others have taken advantage of new technologies such as electro-spinning, polymerization and other techniques. In this way, they tried to combine the good working efficiency of the sensors and the flexibility of the textile. All these approaches are presented in this article.

Findings

The presentation of the latest technologies used to develop textile sensors together will give researchers an idea about new studies that can be done on highly sensitive and efficient textile-based moisture sensor systems.

Originality/value

In this paper humidity sensors have been explained in terms of measuring principle as capacitive and resistive. Then, studies conducted in the last 20 years on the textile-based humidity sensors have been presented in detail. This is a comprehensive review study that presents the latest developments together in this area for researchers.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 255