Search results

1 – 10 of over 6000
Article
Publication date: 16 January 2017

Chirihane Gherbi, Zibouda Aliouat and Mohamed Benmohammed

In particular, this paper aims to systematically analyze a few prominent wireless sensor network (WSN) clustering routing protocols and compare these different approaches…

655

Abstract

Purpose

In particular, this paper aims to systematically analyze a few prominent wireless sensor network (WSN) clustering routing protocols and compare these different approaches according to the taxonomy and several significant metrics.

Design/methodology/approach

In this paper, the authors have summarized recent research results on data routing in sensor networks and classified the approaches into four main categories, namely, data-centric, hierarchical, location-based and quality of service (QoS)-aware, and the authors have discussed the effect of node placement strategies on the operation and performance of WSNs.

Originality/value

Performance-controlled planned networks, where placement and routing must be intertwined and everything from delays to throughput to energy requirements is well-defined and relevant, is an interesting subject of current and future research. Real-time, deadline guarantees and their relationship with routing, mac-layer, duty-cycles and other protocol stack issues are interesting issues that would benefit from further research.

Details

Sensor Review, vol. 37 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 31 December 2006

Curt Cramer, Oliver Stanze, Kilian Weniger and Martina Zitterbart

Many clustering protocols for mobile ad hoc networks (MANETs) have been proposed in the literature. With only one exception so far (1), all these protocols are proactive, thus…

Abstract

Many clustering protocols for mobile ad hoc networks (MANETs) have been proposed in the literature. With only one exception so far (1), all these protocols are proactive, thus wasting bandwidth when their function is not currently needed. To reduce the signalling traffic load, reactive clustering may be employed.We have developed a clustering protocol named “On‐Demand Group Mobility‐Based Clustering” (ODGMBC) (2), (3) which is reactive. Its goal is to build clusters as a basis for address autoconfiguration and hierarchical routing. In contrast to the protocol described in ref. (1), the design process especially addresses the notions of group mobility and of multi‐hop clusters in a MANET. As a result, ODGMBC maps varying physical node groups onto logical clusters. In this paper, ODGMBC is described. It was implemented for the ad hoc network simulator GloMoSim (4) and evaluated using several performance indicators. Simulation results are promising and show that ODGMBC leads to stable clusters. This stability is advantageous for autoconfiguration and routing mechansims to be employed in conjunction with the clustering algorithm.

Details

International Journal of Pervasive Computing and Communications, vol. 2 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 28 December 2021

Abdulla Alateeq, Wael Elmedany, Nedal Ababneh and Kevin Curran

The purpose of this paper is to investigate the latest research related to secure routing protocols in Wireless Sensor Network (WSN) and propose a new approach that can achieve a…

Abstract

Purpose

The purpose of this paper is to investigate the latest research related to secure routing protocols in Wireless Sensor Network (WSN) and propose a new approach that can achieve a higher security level compared to the existing one. One of the main security issues in WSNs is the security of routing protocols. A typical WSN consists of a large number of small size, low-power, low-cost sensor devices. These devices are very resource-constrained and usually use cheap short-range radios to communicate with each other in an ad hoc fashion thus, achieving security in these networks is a big challenge, which is open for research.

Design/methodology/approach

The route updates and data messages of the protocol are authenticated using Edwards-curves Digital Signature Algorithm (EdDSA). Routing protocols play an essential role in WSNs, they ensure the delivery of the sensed data from the remote sensor nodes to back-end systems via a data sink. Routing protocols depend on route updates received from neighboring nodes to determine the best path to the sink. Manipulating these updates by inserting rouge nodes in the network that advertise false updates can lead to a catastrophic impact on the compromised WSN performance.

Findings

As a result, a new secure energy-aware routing protocol (SEARP) is proposed, which uses security enhanced clustering algorithm and EdDSA to authenticate route advertisements and messages. A secure clustering algorithm is also used as part of the proposed protocol to conserve energy, prolong network lifetime and counteract wormhole attacks.

Originality/value

In this paper, a SEARP is proposed to address network layer security attacks in WSNs. A secure clustering algorithm is also used as part of the proposed protocol to conserve energy, prolong network lifetime and counteract wormhole attacks. A simulation has been carried out using Sensoria Simulator and the performance evaluation has been discussed.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 31 December 2006

Jenhui Chen and Chien‐Chun Joe Chou

Wireless sensor networks consist of a large number of nodes with limited battery power and sensing components, which can be used for sensing specified events and gather wanted or…

Abstract

Wireless sensor networks consist of a large number of nodes with limited battery power and sensing components, which can be used for sensing specified events and gather wanted or interesting information via wireless links. It will enable the reliable monitoring of a variety of environments for both civil and military applications. There is a need of energy‐efficient message collection and power management methods to prolong the lifetime of the sensor network. Many methods, such as clustering algorithm, are investigated for power saving reason, however, they only consider reducing the amount of message deliveries by clustering but not the load balance of the clusters to extend the maximum lifetime of the network. Therefore, in this paper, we propose a fully distributed, randomized, and adaptable clustering mechanism named autonomous clustering and message passing (ACMP) protocol for improving energy efficiency in wireless sensor networks. Sensor nodes, according to ACMP, can cluster themselves autonomously by their remaining energy and dynamically choose a corresponding cluster head (CH) to transfer the collected information. Sensor nodes adjust an appropriate power level to form clusters and use minimum energy to exchange messages. The network topology is changed dynamically depending on the CH's energy. Moreover, by maintaining the remaining energy of each node, the traffic load is distributed to all nodes and thus prolong the network lifetime efficiently. Simulation results show that ACMP can achieve a highly energy saving effect as well as prolong the network lifetime.

Details

International Journal of Pervasive Computing and Communications, vol. 2 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 4 August 2020

Aaqil Somauroo and Vandana Bassoo

Due to its boundless potential applications, Wireless Sensor Networks have been subject to much research in the last two decades. WSNs are often deployed in remote environments…

1238

Abstract

Due to its boundless potential applications, Wireless Sensor Networks have been subject to much research in the last two decades. WSNs are often deployed in remote environments making replacement of batteries not feasible. Low energy consumption being of prime requisite led to the development of energy-efficient routing protocols. The proposed routing algorithms seek to prolong the lifetime of sensor nodes in the relatively unexplored area of 3D WSNs. The schemes use chain-based routing technique PEGASIS as basis and employ genetic algorithm to build the chain instead of the greedy algorithm. Proposed schemes will incorporate an energy and distance aware CH selection technique to improve load balancing. Clustering of the network is also implemented to reduce number of nodes in a chain and hence reduce delay. Simulation of our proposed protocols is carried out for homogeneous networks considering separately cases for a static base-station inside and outside the network. Results indicate considerable improvement in lifetime over PEGASIS of 817% and 420% for base station inside and outside the network respectively. Residual energy and delay performance are also considered.

Details

Applied Computing and Informatics, vol. 19 no. 3/4
Type: Research Article
ISSN: 2634-1964

Article
Publication date: 27 June 2008

Giljae Lee, Yoonjoo Kwon, Woojin Seok and Minsun Lee

Recent wireless communication and electronics technology has enabled the development of low‐cost, low‐power, and multi‐functional sensor nodes. However, the fact that sensor nodes…

Abstract

Purpose

Recent wireless communication and electronics technology has enabled the development of low‐cost, low‐power, and multi‐functional sensor nodes. However, the fact that sensor nodes are severely energy‐constrained has been an issue and many energy‐efficient routing protocols have been proposed to resolve it. Cluster‐based routing protocol is one of them. To achieve longer lifetime, some cluster‐based routing protocols use information on GPS‐based location of each sensor node. However, because of high cost, not all sensor nodes can be GPS‐enabled. The purpose of this paper is to propose a simple dynamic clustering approach to achieve energy efficiency for wireless sensor networks (WSN).

Design/methodology/approach

Instead of using location information of each sensor node, this approach utilizes information of remaining energy of each sensor node and changes in the number of cluster head nodes dependent on the number of sensor nodes alive. Performance results are presented and compared with some related protocols.

Findings

The simulations described in the paper show that both residual energy of each sensor node and changing cluster head nodes depending on the number of sensor nodes alive are very critical factors to obtain performance enhancement in terms of lifetime and data transmission. Especially, in some special environment, the proposal has better performance than GPS‐enabled protocol.

Originality/value

The paper is of value in proposing a simple dynamic clustering approach to achieve energy efficiency for WSN.

Details

International Journal of Pervasive Computing and Communications, vol. 4 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 19 June 2017

Manjeet Singh and Surender Kumar Soni

This paper aims to discuss a comprehensive survey on fuzzy-based clustering techniques. The determination of an appropriate sensor node as a cluster head straightforwardly affects…

Abstract

Purpose

This paper aims to discuss a comprehensive survey on fuzzy-based clustering techniques. The determination of an appropriate sensor node as a cluster head straightforwardly affects a network’s lifetime. Clustering often possesses some uncertainties in determining suitable sensor nodes as a cluster head. Owing to various variables, selection of a suitable node as a cluster head is a perplexing decision. Fuzzy logic is capable of handling uncertainties and improving decision-making processes even with insufficient information. Then, state-of-the-art research in the field of clustering techniques has been reviewed.

Design/methodology/approach

The literature is presented in a tabular form with merits and limitations of each technique. Furthermore, the various techniques are compared graphically and classified in a tabular form and the flowcharts of important algorithms are presented with pseudocodes.

Findings

This paper comprehends the importance and distinction of different fuzzy-based clustering methods which are further supportive in designing more efficient clustering protocols.

Originality/value

This paper fulfills the need of a review paper in the field of fuzzy-based clustering techniques because no other paper has reviewed all the fuzzy-based clustering techniques. Furthermore, none of them has presented literature in a tabular form or presented flowcharts with pseudocodes of important techniques.

Details

Sensor Review, vol. 37 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 31 December 2007

Jehn‐Ruey Jiang, Chau‐Yuan Yang, Ting‐Yao Chiou and Shing‐Tsaan Huang

There are two types of medium access control (MAC) layer power‐saving (PS) protocols for IEEE 802.11‐based mobile ad hoc networks: synchronous and asynchronous ones. This paper…

Abstract

Purpose

There are two types of medium access control (MAC) layer power‐saving (PS) protocols for IEEE 802.11‐based mobile ad hoc networks: synchronous and asynchronous ones. This paper seeks to propose a hybrid PS protocol to take advantages of both types of protocols.

Design/methodology/approach

The protocol utilizes the concept of dual‐channel and dual‐transmission‐range clustering. It divides all the hosts into clusters. Each cluster has a head and all the heads are organized as a virtual backbone to help route data. The protocol also utilizes the cluster head dismissal mechanism to avoid the ever‐increasing of cluster heads and to adapt to topology changing.

Findings

Simulation results demonstrate that the proposed protocol is more power‐efficient and more scalable than related protocols.

Originality/value

The proposed protocol is applicable to MANETs composed of hosts with single IEEE 802‐11 network interface card.

Details

International Journal of Pervasive Computing and Communications, vol. 3 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 3 September 2018

Kalpna Guleria and Anil Kumar Verma

Wireless sensor networks (WSNs) have emerged as one of the most promising technology in our day-to-day life. Limited network lifetime and higher energy consumption are two most…

170

Abstract

Purpose

Wireless sensor networks (WSNs) have emerged as one of the most promising technology in our day-to-day life. Limited network lifetime and higher energy consumption are two most critical issues in WSNs. The purpose of this paper is to propose an energy-efficient load balanced cluster-based routing protocol using ant colony optimization (LB-CR-ACO) which ultimately results in enhancement of the network lifetime of WSNs.

Design/methodology/approach

The proposed protocol performs optimal clustering based on cluster head selection weighing function which leads to novel cluster head selection. The cluster formation uses various parameters which are remaining energy of the nodes, received signal strength indicator (RSSI), node density and number of load-balanced node connections. Priority weights are also assigned among these metrics. The cluster head with the highest probability will be selected as an optimal cluster head for a particular round. LB-CR-ACO also performs a dynamic selection of optimal cluster head periodically which conserves energy, thereby using network resources in an efficient and balanced manner. ACO is used in steady state phase for multi-hop data transfer.

Findings

It has been observed through simulation that LB-CR-ACO protocol exhibits better performance for network lifetime in sparse, medium and dense WSN deployments than its peer protocols.

Originality/value

The proposed paper provides a unique energy-efficient LB-CR-ACO for WSNs. LB-CR-ACO performs novel cluster head selection using optimal clustering and multi-hop routing which utilizes ACO. The proposed work results in achieving higher network lifetime than its peer protocols.

Details

International Journal of Pervasive Computing and Communications, vol. 14 no. 3/4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 29 June 2010

Ouadoudi Zytoune, Youssef Fakhri and Driss Aboutajdine

Routing protocols in wireless sensor networks (WSN) are a crucial challenge for which the goal is maximizing the system lifetime. Since the sensor nodes are with limited…

Abstract

Purpose

Routing protocols in wireless sensor networks (WSN) are a crucial challenge for which the goal is maximizing the system lifetime. Since the sensor nodes are with limited capabilities, these routing protocols should be simple, scalable, energy‐efficient, and robust to deal with a very large number of nodes, and also self‐configurable to node failures and changes of the network topology dynamically. The purpose of this paper is to present a new algorithm for cluster forming in WSN based on the node energy required to transmit to the base station.

Design/methodology/approach

Rotation selection of cluster‐head considering the remoteness of the nodes to the sink, and the network node residual energy.

Findings

The simulation results show that this algorithm allows network stability extension compared to the most known clustering algorithm.

Originality/value

Giving a probability to become cluster‐head based on the remoteness of the node to the sink.

Details

Sensor Review, vol. 30 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 6000