Search results

1 – 10 of 622
Article
Publication date: 2 November 2015

Ying Ke, Jun Li and George Havenith

An experimental study was conducted to investigate the local ventilation (the right arm, the chest and the back) and wear response of three types of working jackets in different…

Abstract

Purpose

An experimental study was conducted to investigate the local ventilation (the right arm, the chest and the back) and wear response of three types of working jackets in different conditions. The relationship between the local ventilation and its related wear response was also explored. The paper aims to discuss these issues.

Design/methodology/approach

A clothing local ventilation measuring system was developed based on the steady state method to measure the local ventilation of the right arm, the chest and the back. Separate wear trials were conducted to determine the local skin temperature, local microclimate temperature and humidity, clothing local surface temperature, heart rate (HR), eardrum temperature and subjective perceptions.

Findings

The results indicated that the back part of the jacket had the highest ventilation, followed by the chest and the arm. Fabric permeability affected the local ventilation of the arm and the chest more than on the back. Clothing local surface temperature was significantly related to garment regions but not to fabric permeability. Back ventilation and back surface temperature, arm or chest ventilation and local microclimate humidity of the arm or chest, HR and back ventilation, local ventilation of the arm or the chest and its related thermal sensation, had significant linear relationships.

Originality/value

The research will help to understand the relationship between the air exchange of the microclimate and the wear response, and thus gives some suggestions on garment design or selection, especially for the working garments.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 July 2006

Hiroyuki Ueda, Yoshimitsu Inoue, Mitsuo Matsudaira, Tsutomu Araki and George Havenith

The aim of this study is to explore the influence of the clothing ventilation in three body regions on the humidity of the local clothing microclimates under five work‐shirts…

1017

Abstract

Purpose

The aim of this study is to explore the influence of the clothing ventilation in three body regions on the humidity of the local clothing microclimates under five work‐shirts immediately after the onset of sweating in light exercise.

Design/methodology/approach

The clothing microclimate ventilations were measured at chest, back and upper arm using a manikin. Separate wear trials were performed to determine the sweat production and the humidity of the clothing microclimate at the same locations as where the ventilation was measured during light exercise.

Findings

Every shirt shows the greatest value of ventilation index (VI) for the chest and the smallest one for the upper arm. The values of VI differ remarkably at the chest among the five shirts. Comfort sensation became gradually worse as the time passed after starting exercise. There was no significant difference among the clothing conditions in mean values of rectal temperature, local skin temperatures, microclimate temperatures, microclimate relative humidities and local sweat rates at three regions over 10 min after the onset of sweating. A relationship was observed between the ratio of the mean moisture concentration in the clothing microclimate to the mean sweat rate at the chest and the back and the VI.

Originality/value

The results suggest that clothing ventilation should be measured in different body regions in response to sweat rates in corresponding regions.

Details

International Journal of Clothing Science and Technology, vol. 18 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 October 2022

Fateme Sayanjali, Nazanin Ezazshahabi and Fatemeh Mousazadegan

The aim of the present study is to investigate the effect of fabric weave structure on air permeability and its relation with the garment ventilation.

Abstract

Purpose

The aim of the present study is to investigate the effect of fabric weave structure on air permeability and its relation with the garment ventilation.

Design/methodology/approach

For this purpose, five groups of cotton/polyester shirting fabrics with plain, T2/1, T2/2, T3/1 and T3/3 weave structures were studied. In order to evaluate ventilation, the garment samples were prepared in different sizes, so that the thickness of the air gap formed between the garment and the body simulator varies by zero, 1.5, 1.2 and 2.9 cm. The effect of wind and its speed (1, 2 and 3 m/s) on clothing ventilation has also been evaluated.

Findings

The results indicated that the rise of wind speed and air gap thickness, due to the increased convective heat transfer, would diminish the air gap temperature of clothing and improves its ventilation. In addition, the fabric weave pattern influences the air ability to pass through the fabric, thus affecting the ventilation capability of the garment.

Originality/value

Garments made of fabrics with higher structural firmness, such as the plain, not only have lower air permeability, but also has weaker ventilation capability.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 May 2020

Jingxian Xu, Huijuan Liu, Yunyi Wang and Jun Li

This study aims to investigate the heat transfer mechanism of the uniforms used by people working in hot, humid and windy environments. Furthermore, the effectiveness of an…

Abstract

Purpose

This study aims to investigate the heat transfer mechanism of the uniforms used by people working in hot, humid and windy environments. Furthermore, the effectiveness of an opening structure added to the armpit of the uniforms in improving thermal comfort was comparatively examined.

Design/methodology/approach

A set of uniforms was tested with the opening at the armpit alternatively zipped or unzipped. Thermal manikin and human tests were performed in a climatic chamber simulating the specific environmental conditions, including wind speeds at four levels (0.15, 0.5, 2, 4 m/s) and relative humidities at two levels (50 and 85%). Static and dynamic thermal insulations of clothing (IT) were examined by the thermal manikin tests. The human bodies' thermal responses, including heart rates (HR), eardrum temperatures (Te), skin temperatures (Tsk) and subjective perceptions, were given by the human tests.

Findings

Special mechanisms of heat transfer in the specific uniforms used in tropical monsoon climates were revealed. Reductions on IT were caused by the movement of the human body and the environmental wind, and the empirical equations would underestimate this reduction. The opening at the armpit was able to prompt more heat transfer under dynamic condition, with reducing the IT by 11.8%, lowering the mean Tsk by 0.92°C, and significantly improving the subjective perceptions (p < 0.05). The heat exhaustion was alleviated with lowering the Te by 0.32°C.

Originality/value

This study managed to improve the thermal performance of uniforms for workers under unforgiving conditions. The evaluation and design methods introduced by this study provided practical guidance for similar products with strict dress codes and cost control requirements based on the findings from thorough product tests and analysis.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2016

Shurong Hu, Mengmeng Zhao and Jun Li

– The purpose of this paper is to explore the effects of wind direction and ease allowance on thermal comfort in sportswear.

Abstract

Purpose

The purpose of this paper is to explore the effects of wind direction and ease allowance on thermal comfort in sportswear.

Design/methodology/approach

The effects of wind direction (front, side, back and calm (no wind) 1.5 m/s) and seven magnitudes of ease allowance on sportswear thermal insulation and surface temperature were investigated. An 11 zones’ thermal manikin was used to acquire the static thermal insulation. Surface temperature was captured by a thermal imager.

Findings

The results showed that the wind was a significant effect on thermal performance, however, wind direction effect was only significant in the segment covered with multilayer fabric, such as the abdomen and hip (p=0.034). Although the ease allowance influenced the overall thermal insulation obviously, the difference between seven sizes suits was not significant. Nevertheless, the ease allowance affected the surface temperature of chest and back significantly (p=0.023, 0.007). Correlation between thermal insulation and surface temperature was negative, and correlation level was degraded when affected by wind factor.

Research limitations/implications

Sportswear’s fabric and style did not discussed as effect factors. It would be taken into accounted in the future research.

Originality/value

Wind direction impact thermal comfort in multilayer regions significantly. It is a reference to improve sportswear’s comfort design.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 September 2016

Xiao-Qun Dai and George Havenith

The purpose of this paper is to investigate the effect of air and vapor permeability of jacket materials on ventilation, heat and moisture transfer.

Abstract

Purpose

The purpose of this paper is to investigate the effect of air and vapor permeability of jacket materials on ventilation, heat and moisture transfer.

Design/methodology/approach

Clothing ventilation (V), thermal insulation (I) and vapor resistance (R e ) of three jackets made of different materials (normal textile, PVC and “breathable” membrane coated textile), worn on an articulated thermal manikin in a controlled climate chamber, were measured under various conditions, respectively. The various conditions of microenvironment ventilation were created by making the manikin stand and walk, combined with three wind speeds of <0.2, 0.4 and 2.0 m/s, respectively.

Findings

In the condition without any forced convection, the air permeability makes no big difference to dry and evaporative heat transfer among the jackets, while the vapor permeability plays a big role in the evaporative heat loss. In the condition with forced convection, the dry heat diffusion is strongly coupled to the evaporative heat transfer in air and vapor permeable textile material.

Research limitations/implications

The effects of ventilation on heat and moisture transfer varies because of different ways of ventilation arising: penetration through the fabric is proven to be the most effective way in vapor transfer although it does not seem as helpful for dry heat diffusion.

Originality/value

The achievements in this paper deepens the understanding of the process of the dry and evaporative heat transfer through clothing, provides clothing designer guidance to choose proper materials for a garment, especially work clothing.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 November 2020

Miao Tian and Jun Li

The purpose of this study is to determine the effect of ventilation openings and fire intensity on heat transfer and fluid flow within the microclimate between 3D human body and…

Abstract

Purpose

The purpose of this study is to determine the effect of ventilation openings and fire intensity on heat transfer and fluid flow within the microclimate between 3D human body and clothing.

Design/methodology/approach

On account of interaction effects of fire and ventilation openings on heat transfer process, a 3D transient computational fluid dynamics model considering the real shape of human body and clothing was developed. The model was validated by comparing heat flux history and distribution with experimental results. Heat transfer modes and fluid flow were investigated under three levels of fire intensity for the microclimate with ventilation openings and closures.

Findings

Temperature distribution on skin surface with open microclimate was heavily depended on the heat transfer through ventilation openings. Higher temperature for the clothing with confined microclimate was affected by the position and direction of flames injection. The presence of openings contributed to the greater velocity at forearms, shanks and around neck, which enhanced the convective heat transfer within microclimate. Thermal radiation was the dominant heat transfer mode within the microclimate for garment with closures. On the contrary, convective heat transfer within microclimate for clothing with openings cannot be neglected.

Practical implications

The findings provided fundamental supports for the ease and pattern design of the improved thermal protective systems, so as to realize the optimal thermal insulation of the microclimate on the garment level in the future.

Originality/value

The outcomes broaden the insights of results obtained from the mesoscale models. Different high skin temperature distribution and heat transfer modes caused by thermal environment and clothing structure provide basis for advanced thermal protective clothing design.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 11 November 2013

Matthew Patrick Morrissey and René Michel Rossi

The purpose of this investigation was to measure the changes in effective thermal insulation caused by three different types of outer garment ventilation features (chest zips…

Abstract

Purpose

The purpose of this investigation was to measure the changes in effective thermal insulation caused by three different types of outer garment ventilation features (chest zips, back zips and pit zips) when combined with either a high or low air permeability insulating layer.

Design/methodology/approach

The measurements in this investigation were made with a thermal manikin and with a 26 zone thermal torso. Measurements were made at two air flow speeds with each manikin; the different air flow characteristics for each manikin allowed investigation of how ventilation features interact with different air flow distributions.

Findings

It was established in this study that high permeability insulation increases the efficacy of ventilation features by an average of 7 per cent at the low wind speed and 10 per cent at the high wind speed. No particular ventilation feature was found to be consistently the most effective; the data suggest that garment openings should simply be located in well-ventilated areas.

Originality/value

This investigation analysed the ventilation characteristics of protective clothing ensembles with different ventilation features, allowing designers to create more comfortable clothing for work and leisure activities.

Details

International Journal of Clothing Science and Technology, vol. 25 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 December 2023

Sri Yogi Kottala and Atul Kumar Sahu

Ergonomics usually reciprocate the study about people fitness toward working environment. In addition, financial distress refers a condition of organizations incompetency in…

Abstract

Purpose

Ergonomics usually reciprocate the study about people fitness toward working environment. In addition, financial distress refers a condition of organizations incompetency in generating sufficient revenues or incomes, which thereby refrain them to pay their financial obligations. This study aims to evaluate two independent organizational fields named as ergonomics in first phase and financial distress in manufacturing organization behavior in the second phase. The study presented a resiliency framework for operations and strategic management in the third phase based on various facts received from the distress organizations.

Design/methodology/approach

A questionnaire survey based on plant-visit is presented. The study embedded two segments to explicate its novelty. In the first segment, the plant-visit case study is presented and in the second segment, an exploratory data related to financial distress is presented. The study tried to communicate observations related to multiple decision-making fields in single umbrella, where multiple concepts like ergonomics and financial distress of organizations as well as employees are presented. DEMATEL-ANP integrated approach is used to represent the critical financial distress dimensions of employees and their ranking.

Findings

The study provided insights toward connecting two independent fields named as ergonomics and financial distress in single umbrella. The study can benefit practitioners in designing policies and procedures in their planning model to effectively achieve organizational goals. The study presented 14 financial distress drivers of employees and advocated the aggregation of ergonomics and financial distress toward developing a holistic framework for attaining organization goals for sustainability.

Originality/value

The study presented a comprehensive understanding about multiple organization decision-making fields toward developing a holistic approach from different aspects for attaining organizational sustainability. The study can be fruitful in stimulating cross-pollination of ideas between researchers and provides a good understandability of ergonomics and financial distress in single roof.

Details

The Learning Organization, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-6474

Keywords

Article
Publication date: 1 March 2001

K.G.B. Bakewell

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18;…

14406

Abstract

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management Volumes 8‐18; Structural Survey Volumes 8‐18.

Details

Property Management, vol. 19 no. 3
Type: Research Article
ISSN: 0263-7472

1 – 10 of 622