Search results

1 – 10 of 89
Article
Publication date: 31 May 2022

Samridhi Garg, Monica Puri Sikka and Vinay Kumar Midha

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable…

Abstract

Purpose

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable. The cloth absorbs sweat and then releases it, allowing the body to chill down. By capillary action, moisture is driven away from fabric pores or sucked out of yarns. Convectional air movement improves sweat drainage, which may aid in body temperature reduction. Clothing reduces the skin's ability to transport heat and moisture to the outside. Excessive moisture makes clothing stick to the skin, whereas excessive heat induces heat stress, making the user uncomfortable. Wet heat loss is significantly more difficult to understand than dry heat loss. The purpose of this study is to provided a good compilation of complete information on wet thermal comfort of textile and technological elements to be consider while constructing protective apparel.

Design/methodology/approach

This paper aims to critically review studies on the thermal comfort of textiles in wet conditions and assess the results to guide future research.

Findings

Several recent studies focused on wet textiles' impact on comfort. Moisture reduces the fabric's thermal insulation value while also altering its moisture characteristics. Moisture and heat conductivity were linked. Sweat and other factors impact fabric comfort. So, while evaluating a fabric's comfort, consider both external and inside moisture.

Originality/value

The systematic literature review in this research focuses on wet thermal comfort and technological elements to consider while constructing protective apparel.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 14 March 2023

Jinyu Li, Hangyu Yan, Yunfeng Ni, Linlin Fu and Yunchu Yang

At present, electrical heating clothing is widely used to keep ourselves warm at low temperature. The purpose of this paper is to explore the heat transfer performance of…

Abstract

Purpose

At present, electrical heating clothing is widely used to keep ourselves warm at low temperature. The purpose of this paper is to explore the heat transfer performance of electrical heating fabric and the thermal comfort of human skin at low temperature.

Design/methodology/approach

The combined model of skin-electrical heating fabric system was established to simulate human skin tissue wearing electrical heating clothing. A series of simulation experiments are designed on the basis of verifying the effectiveness of the combined model. The temperature distribution inside the combined model and on the skin surface under different heating powers is simulated and analyzed. At the same time, the influence of ambient temperature on the thermal performance of electrical heating fabric was explored.

Findings

The skin model with blood vessels reflected the temperature change of human skin wearing electrical heating clothing. The higher the heating power of the electrical heating fabric was, the greater the temperature of the skin surface changed, the faster the temperature rose and the longer the time required to reach the stable state would be. After the heating element was electrified, it had the greatest effect on the average temperature of the epidermis and dermis, had smaller effect on the average temperature of subcutaneous layer and had little effect on the temperature of blood vessels. When the heating power was the same, the higher the ambient temperature was, the more obvious the heating effect of electrical heating fabric was. Electrical heating fabrics with different heating powers were suitable for different ambient temperature ranges.

Originality/value

A reasonable and effective evaluation method for the thermal comfort of electrical heating fabric was provided by establishing the skin model and combined model of the skin-electrical heating fabric system. It provides a reference for the design and application of electrical heating clothing.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 February 2024

Saba Sareminia, Zahra Ghayoumian and Fatemeh Haghighat

The textile industry holds immense significance in the economy of any nation, particularly in the production of synthetic yarn and fabrics. Consequently, the pursuit of acquiring…

Abstract

Purpose

The textile industry holds immense significance in the economy of any nation, particularly in the production of synthetic yarn and fabrics. Consequently, the pursuit of acquiring high-quality products at a reduced cost has become a significant concern for countries. The primary objective of this research is to leverage data mining and data intelligence techniques to enhance and refine the production process of texturized yarn by developing an intelligent operating guide that enables the adjustment of production process parameters in the texturized yarn manufacturing process, based on the specifications of raw materials.

Design/methodology/approach

This research undertook a systematic literature review to explore the various factors that influence yarn quality. Data mining techniques, including deep learning, K-nearest neighbor (KNN), decision tree, Naïve Bayes, support vector machine and VOTE, were employed to identify the most crucial factors. Subsequently, an executive and dynamic guide was developed utilizing data intelligence tools such as Power BI (Business Intelligence). The proposed model was then applied to the production process of a textile company in Iran 2020 to 2021.

Findings

The results of this research highlight that the production process parameters exert a more significant influence on texturized yarn quality than the characteristics of raw materials. The executive production guide was designed by selecting the optimal combination of production process parameters, namely draw ratio, D/Y and primary temperature, with the incorporation of limiting indexes derived from the raw material characteristics to predict tenacity and elongation.

Originality/value

This paper contributes by introducing a novel method for creating a dynamic guide. An intelligent and dynamic guide for tenacity and elongation in texturized yarn production was proposed, boasting an approximate accuracy rate of 80%. This developed guide is dynamic and seamlessly integrated with the production database. It undergoes regular updates every three months, incorporating the selected features of the process and raw materials, their respective thresholds, and the predicted levels of elongation and tenacity.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 January 2024

Qing Jiang, Yuhang Wan, Xiaoqian Li, Xueru Qu, Shengnan Ouyang, Yi Qin, Zhenyu Zhu, Yushu Wang, Hualing He and Zhicai Yu

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without…

Abstract

Purpose

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without environmental pollution.

Design/methodology/approach

SA/SiO2 aerogel with refractory heat insulation and enhanced radiative cooling performance was fabricated by freeze-drying method, which can be used in firefighting clothing. The microstructure, chemical composition, thermal stability, and thermal emissivity were analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analyzer and infrared emissivity measurement instrument. The radiative cooling effect of aerogel was studied using thermal infrared imager and thermocouple.

Findings

When the addition of SiO2 is 25% of SA, the prepared aerogel has excellent heat insulation and a high radiative cooling effect. Under a clear sky, the temperature of SA/SiO2 aerogel is 9.4°C lower than that of pure SA aerogel and 22.1°C lower than that of the simulated environment. In addition, aerogel has more exceptional heat insulation effect than other common fabrics in the heat insulation performance test.

Research limitations/implications

SA/SiO2 aerogel has passive radiative cooling function, which can efficaciously economize global energy, and it is paramount to environment-friendly cooling.

Practical implications

This method could pave the way for high-performance cooling materials designed for firefighting clothing to keep maintain the wearing comfort of firefighters.

Originality/value

SA/SiO2 aerogel used in firefighting clothing can release heat to the low-temperature outer space in the form of thermal radiation to achieve its own cooling purpose, without additional energy supply.

Graphical abstract

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 October 2023

Samridhi Garg, Vinay Kumar Midha and Monica Sikka

In experiments utilising sweat solution and distilled water, seamed ensembles performed less thermally efficiently than unseamed fabrics.

Abstract

Purpose

In experiments utilising sweat solution and distilled water, seamed ensembles performed less thermally efficiently than unseamed fabrics.

Design/methodology/approach

Water may not accurately reflect perspiration when testing multi-layered clothes for thermal comfort in wet state. Most researchers used water or sodium chloride (NaCl) to measure wet state thermal comfort. However, human perspiration is an extremely complex mixture of aqueous chemicals, including minerals, salts, lipids, urea and lactic acid. This study compares the effects of simulated sweat solution to distilled water on the thermal behaviour of a multi-layered fabric assembly with different seam patterns.

Findings

Experiment results show that stitching decreases thermal resistance and thermal conductivity. Seam pattern of 10 cm diagonal spacing is more thermally resistant than 2.5 cm diagonal spacing. In comparison to that of simulated sweat, fabric that has been moistened with distilled water exhibits increased thermal conductivity. Hollow polyester wadding or micro polyester wadding as the intermediate layer exhibits greater thermal resistance than multi-layered construction with spacer fabric as middle layer.

Originality/value

This study considers human perspiration while designing protective clothing for wet thermal comfort.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 January 2022

Vigneshkumar Chellappa and Vasundhara Srivastava

Science mapping is an essential application of visualization technology widely used in safety, construction management and environmental science. The purpose of this study was to…

243

Abstract

Purpose

Science mapping is an essential application of visualization technology widely used in safety, construction management and environmental science. The purpose of this study was to explore thermal comfort in residential buildings (TCinRB) research in India, identify research trends using a science mapping approach and provide a perspective for recommending future research in TCinRB.

Design/methodology/approach

This study used the VOSviewer tool to conduct a systematic analysis of the development trend in TCinRB studies in India based on Scopus Index articles published between 2001 and 2020. The annual numbers of articles, geographical locations of studies, major research organizations and authors, and the sources of journals on TCinRB were presented based on the analysis. Then, using co-authorship analysis, the collaborations among the major research groups were reported. Furthermore, research trends on TCinRB studies were visually explored using keyword co-occurrence analysis. The emerging research topics in the TCinRB research community were discovered by analyzing the authors’ keywords.

Findings

The findings revealed that studies had been discovered to pay more attention to north-east India, vernacular architecture, Hyderabad apartments and temperature performance in the past two decades. Thermal adaptation, composite climate, evaporative cooling and clothing insulation are emerging research areas in the TCinRB domain. The findings summarized mainstream research areas based on Indian climatic zones, addressed current TCinRB research gaps and suggested future research directions.

Originality/value

This review is particularly significant because it could help researchers understand the body of knowledge in TCinRB and opens the way for future research to fill an important research gap.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 February 2024

Boyi Li, Miao Tian, Xiaohan Liu, Jun Li, Yun Su and Jiaming Ni

The purpose of this study is to predict the thermal protective performance (TPP) of flame-retardant fabric more economically using machine learning and analyze the factors…

Abstract

Purpose

The purpose of this study is to predict the thermal protective performance (TPP) of flame-retardant fabric more economically using machine learning and analyze the factors affecting the TPP using model visualization.

Design/methodology/approach

A total of 13 machine learning models were trained by collecting 414 datasets of typical flame-retardant fabric from current literature. The optimal performance model was used for feature importance ranking and correlation variable analysis through model visualization.

Findings

Five models with better performance were screened, all of which showed R2 greater than 0.96 and root mean squared error less than 3.0. Heat map results revealed that the TPP of fabrics differed significantly under different types of thermal exposure. The effect of fabric weight was more apparent in the flame or low thermal radiation environment. The increase in fabric weight, fabric thickness, air gap width and relative humidity of the air gap improved the TPP of the fabric.

Practical implications

The findings suggested that the visual analysis method of machine learning can intuitively understand the change trend and range of second-degree burn time under the influence of multiple variables. The established models can be used to predict the TPP of fabrics, providing a reference for researchers to carry out relevant research.

Originality/value

The findings of this study contribute directional insights for optimizing the structure of thermal protective clothing, and introduce innovative perspectives and methodologies for advancing heat transfer modeling in thermal protective clothing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 October 2022

Manoj Kumar Imrith, Satyadev Rosunee and Roshan Unmar

Lightweight, open construction cotton knitted fabrics generally do not impart good protection from solar ultraviolet radiation (UVR). As lightweight 100% cotton single jersey is…

Abstract

Purpose

Lightweight, open construction cotton knitted fabrics generally do not impart good protection from solar ultraviolet radiation (UVR). As lightweight 100% cotton single jersey is highly cherished for summerwear, it is sine qua non to understand the structural parameters that effectively strike a good balance between UV protection and thermophysiological comfort of the wearer. Relatively heavy fabrics protect from UVR, but comfort is compromised because of waning porosity, increase in thickness and thermal insulation. The purpose of this paper is to engineer knits that will bestow maximum UV protection while preserving the thermophysiological comfort of the wearer.

Design/methodology/approach

In total, 27 cotton single jersey fabrics with different areal densities and yarn counts were selected. Ultraviolet protection factor (UPF) was calculated based on the work of Imrith (2022). To précis, the authors constructed a UV box to measure the UPF of fabrics, denoted as UPFB. UPFB data were correlated with AATCC 183-2004 and yielded high correlation, R2 0.977. It was concluded that UPF 50 corresponds to UPFB 94.3. Thermal comfort properties were measured on the Alambeta and water-vapour resistance on the Permetest. Linear programming (LP) was used to optimize UPFB and comfort. Linear optimization focused on maximizing UPFB while keeping the thermophysiological comfort and areal density as constraints.

Findings

The resulting linear geometrical and sensitivity analyses generated multiple technically feasible solutions of fabrics thickness and porosity that gave valid UPFB, thermal absorptivity and water-vapour and thermal resistance. Subsequently, an interactive optimization software was developed to predict the stitch length, tightness factor and yarn count for optimum UPFB from a given areal density. The predicted values were then used to knit seven 100% cotton single jersey fabrics and were tested for UV protection. All seven fabrics gave UPFB above the threshold, that is, higher than 94.3. The mathematical model demonstrated good correlations with the optimized parameters and experimental values.

Originality/value

The optimization software predicted the optimum UPFB reasonably well, starting from the fabric structural and constructional parameters. In addition, the models were developed as interactive user interfaces, which can be used by knitted fabric developers to engineer cotton knits for maximizing UV protection without compromising thermophysiological comfort. It has been demonstrated that LP is an efficient tool for the optimization and prediction of targeted knitted fabrics parameters.

Details

Research Journal of Textile and Apparel, vol. 27 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 October 2023

Ayatallah Magdy, Ayman Hassaan Mahmoud and Ahmed Saleh

Comfortable outdoor workspaces are important for employees in business parks and urban areas. Prioritizing a pleasant thermal environment is essential for employee productivity…

Abstract

Purpose

Comfortable outdoor workspaces are important for employees in business parks and urban areas. Prioritizing a pleasant thermal environment is essential for employee productivity, as well as the improvement of outdoor spaces between office buildings to enhance social activities and quality of outdoor workplaces in a hot arid climate has been subjected to very little studies Thus, this study focuses on business parks (BPs) landscape elements. The objective of this study is to enhance the user's thermal comfort in the work environment, especially in the outdoors attached to the administrative and office buildings such as the BPs.

Design/methodology/approach

This research follows Four-phases methodology. Phase 1 is the investigation of the literature review including the Concept and consideration of BP urban planning, Achieving outdoor thermal comfort (OTC) and shading elements analysis. Phase 2 is the case study initial analysis targeting for prioritizing zones for shading involves three main methods: social assessment, geometrical assessment and environmental assessment. Phase 3 entails selecting shading elements that are suitable for the zones requiring shading parametrize the selected shading elements. Phase 4 focuses on the optimization of OTC through shading arrangements for the prioritized zones.

Findings

Shading design is a multidimensional process that requires consideration of various factors, including social aspects, environmental impact and structural integrity. Shading elements in urban areas play a crucial role in mitigating heat stress by effectively shielding surfaces from solar radiation. The integration of parametric design and computational optimization techniques enhances the shading design process by generating a wide range of alternative solutions.

Research limitations/implications

While conducting this research, it is important to acknowledge certain limitations that may affect the generalizability and scope of the findings. One significant limitation lies in the use of the shade audit method as a tool to prioritize zones for shading. Although the shade audit approach offers practical benefits for designers compared to using questionnaires, it may have its own inherent biases or may not capture the full complexity of human preferences and needs.

Originality/value

Few studies have focused on optimizing the type and location of devices that shade outdoor spaces. As a result, there is no consensus on the workflow that should regulate the design of outdoor shading installations in terms of microclimate and human thermal comfort, therefore testing parametric shading scenarios for open spaces between office buildings to increase the benefit of the outer environment is very important. The study synthesizes OTC strategies by filling the research gap through the implementation of a proper workflow that utilizes parametric thermal comfort.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 20 March 2023

Annu Kumari and Noopur Anand

Body positivity movement empowered plus-size women globally to speak up boldly about their clothing needs. Retailers cannot satisfy this group with some classic style offerings…

Abstract

Purpose

Body positivity movement empowered plus-size women globally to speak up boldly about their clothing needs. Retailers cannot satisfy this group with some classic style offerings anymore. By taking clue from existing literature, this study aims to identify clothing preferences and problems related to ready-made plus-size clothing in India. Although many past literature pointed out about poorly fitted and size unavailability issues worldwide, very few of them addressed about clothing style preferences.

Design/methodology/approach

A self-administered close-ended questionnaire was used to answer a set of objectives. A pilot study with 40 plus-size women was carried out to check the reliability and validity of the instrument. Four hundred subject's data were gathered from six Indian cities with a purpose of varied geographical importance. Statistical tests like binomial distribution was used to analyze fit-related problems of 12 bodily sites such as shoulder, upper arm, lower arm, bust, waist, stomach, abdomen, hip, thigh, lower leg, armhole and elbow, and frequency charts were used to examine Likert scale data of sizing problems. The choices of 12 clothing styles were mapped through four factors which affect the purchasing decision of a plus-size woman.

Findings

Poor-fitted clothes at 10 body sites out of the 12 reflected about the fit aspect of plus-size clothing in India. Findings associated to sizing issues like unavailability of trendy clothes in appropriate sizes, which also adorn Indian curvy figure, shows synonymy to the worldwide researcher's findings related to sizing chaos. Classic silhouettes like Straight Indian kurti, A-line dresses and regular-fit trousers were majorly preferred by women. Hiding body bulges was mostly preferred while purchasing loose-fitted garments, and fitted garments were preferred only if these suits to the curvy body proportion. Appropriate fit and size availability are always a prime requisite for this class of women.

Originality/value

The outcomes of research will help Indian retailers/manufacturers to update their patterns in order to provide desired fit. In this lacuna of standard size chart, the study will add value in the development of Indian plus-size women's size chart. The factor mapping with clothing preferences will be useful to reduce rejections and inventories.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1361-2026

Keywords

1 – 10 of 89