Search results

1 – 10 of 13
Article
Publication date: 31 August 2023

Uche Emmanuel Edike, Olumide Afolarin Adenuga, Daniel Uwumarogie Idusuyi and Abdulkabir Adedamola Oke

The purpose of this study is to advance the application of pulverised cow bone ash (PCBA) as a partial replacement of cement in soil stabilisation for the production of bricks…

Abstract

Purpose

The purpose of this study is to advance the application of pulverised cow bone ash (PCBA) as a partial replacement of cement in soil stabilisation for the production of bricks. The study investigated the impact of PCBA substitution on the characteristic strength of clay bricks under variant curing media.

Design/methodology/approach

Dried cow bones were pulverised, and an energy-dispersive X-ray fluorescence test was conducted on PCBA samples to determine the chemical constituents and ascertain the pozzolanic characteristics. Ordinary Portland cement (OPC) and PCBA were blended at 100%, 75%, 50%, 25% and 0% of cement substitution by mass to stabilise lateritic clay at 10% total binder content for the production of bricks. The binder-to-lateritic clay matrixes were used to produce clay bricks and cylinders for compressive and splitting tensile strength tests, respectively.

Findings

The study found that PCBA and OPC have similar chemical compositions. The strength of the clay bricks increased with curing age, and the thermal curing of clay bricks positively impacted the strength development. The study established that PCBA is a suitable substitute for cement, up to 25% for stabilisation in clay brick production.

Practical implications

Construction stakeholders can successfully use a PCBA-OPC binder blend of 1:3 to stabilise clay at 10% total binder content for the production of bricks. The stabilised clay bricks should be cured at an elevated temperature of approximately 90°C for 48 h to achieve satisfactory performance.

Originality/value

The PCBA-OPC binder blend provides adequate soil stabilisation for the production of clay bricks and curing the clay bricks at elevated temperature. This aspect of the biomass/OPC binder blend has not been explored for brick production, and this is important for the reduction of the environmental impacts of cement production and waste from abattoirs.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 15 June 2022

Mounir Kouhila, Younes Bahammou, Hamza Lamsyehe, Zakaria Tagnamas, Haytem Moussaoui, Ali Idlimam and Abdelkader Lamharrar

The paper aims to evaluate drying performance of earth mortar by solar drying for more durability, minimize pathologies in traditional construction and determine the influence of…

Abstract

Purpose

The paper aims to evaluate drying performance of earth mortar by solar drying for more durability, minimize pathologies in traditional construction and determine the influence of temperature and humidity on the microstructure of earth mortar using static gravimetric method.

Design/methodology/approach

A convective solar dryer was used for the pretreatment of building and solid materials for construction.

Findings

The humidity influences the mortar sorption – surface water sorption of earth mortar increased with increasing temperature.

Originality/value

The study used a novel method for pretreatment building materials by using solar dryer.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 1 February 2023

Francine van Tonder and P.D. Rwelamila

One of the greatest challenges faced by the 1994 post-apartheid government in South Africa is the housing problem that has persisted for almost 30 years into democracy. Innovation…

Abstract

Purpose

One of the greatest challenges faced by the 1994 post-apartheid government in South Africa is the housing problem that has persisted for almost 30 years into democracy. Innovation in research and practice is required to address this problem. This paper aims to discuss the aforementioned objective.

Design/methodology/approach

This paper presents an argument for housing knowledge management as one part of a much larger system of housing provision and critically compares information variations on one hypothetical, low-cost housing unit adapted for varying climatic regions. It aims to enquire if there is an overlap in information.

Findings

The findings do confirm a noteworthy overlap in the information of the varying units. Therefore, knowledge management of the information would prove effective and may contribute in part to housing provision.

Research limitations/implications

The study is limited to assessing the information changes made to the contract documentation of the housing unit.

Social implications

The paper argues that knowledge management of this overlapping information could impact housing provision by providing knowledge power to those affected by the housing problem.

Originality/value

The findings are a unique perspective presented through a knowledge management lens. In addition, the said knowledge management lens provides a platform to raise additional questions. When seeking answers to these questions, it is expected that research sub-themes would be identified focussing further research studies towards finding answers.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 15 March 2024

Obed Ofori Yemoh, Richard Opoku, Gabriel Takyi, Ernest Kwadwo Adomako, Felix Uba and George Obeng

This study has assessed the thermal performance of locally fabricated bio-based building envelopes made of coconut and corn husk composite bricks to reduce building wall heat…

Abstract

Purpose

This study has assessed the thermal performance of locally fabricated bio-based building envelopes made of coconut and corn husk composite bricks to reduce building wall heat transmission load and energy consumption towards green building adaptation.

Design/methodology/approach

Samples of coconut fiber (coir) and corn husk fiber bricks were fabricated and tested for their thermophysical properties using the Transient Plane Source (TPS) 2500s instrument. A simulation was conducted using Dynamic Energy Response of Building - Lunds Tekniska Hogskola (DEROB-LTH) to determine indoor temperature variation over 24 h. The time lag and decrement factor, two important parameters in evaluating building envelopes, were also determined.

Findings

The time lag of the bio-based composite building envelope was found to be in the range of 4.2–4.6 h for 100 mm thickness block and 10.64–11.5 h for 200 mm thickness block. The decrement factor was also determined to be in the range of 0.87–0.88. The bio-based composite building envelopes were able to maintain the indoor temperature of the model from 25.4 to 27.4 °C, providing a closely stable indoor thermal comfort despite varying outdoor temperatures. The temperature variation in 24 h, was very stable for about 8 h before a degree increment, providing a comfortable indoor temperature for occupants and the need not to rely on air conditions and other mechanical forms of cooling. Potential energy savings also peaked at 529.14 kWh per year.

Practical implications

The findings of this study present opportunities to building developers and engineers in terms of selecting vernacular materials for building envelopes towards green building adaptation, energy savings, reduced construction costs and job creation.

Originality/value

This study presents for the first time, time lag and decrement factor for bio-based composite building envelopes for green building adaptation in hot climates, as found in Ghana.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 30 October 2023

Oluseyi Julius Adebowale and Justus Ngala Agumba

The United Nations has demonstrated a commitment to preserving the ecosystem through its 2030 sustainable development goals agenda. One crucial objective of these goals is to…

Abstract

Purpose

The United Nations has demonstrated a commitment to preserving the ecosystem through its 2030 sustainable development goals agenda. One crucial objective of these goals is to promote a healthy ecosystem and discourage practices that harm it. Building materials production significantly contributes to the emissions of greenhouse gases. This poses a threat to the ecosystem and prompts a growing demand for sustainable building materials (SBMs). The purpose of this study is to investigate SBMs to determine their utilization in construction operations and the potential impact their application could have on construction productivity.

Design/methodology/approach

A systematic review of the existing literature in the field of SBMs was conducted for the study. The search strings used were “sustainable” AND (“building” OR “construction”) AND “materials” AND “productivity”. A total of 146 articles were obtained from the Scopus database and reviewed.

Findings

Bio-based, cementitious and phase change materials were the main categories of SBMs. Materials in these categories have the potential to substantially contribute to sustainability in the construction sector. However, challenges such as availability, cost, expertise, awareness, social acceptance and resistance to innovation must be addressed to promote the increased utilization of SBMs and enhance construction productivity.

Originality/value

Many studies have explored SBMs, but there is a dearth of studies that address productivity in the context of SBMs, which leaves a gap in understanding. This study addresses this gap by drawing on existing studies to determine the potential implications that using SBMs could have on construction productivity.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 2 January 2024

Veltrice Tan

This paper aims to determine the types of legal mechanisms that authorities can use to recover stolen assets for and from China.

Abstract

Purpose

This paper aims to determine the types of legal mechanisms that authorities can use to recover stolen assets for and from China.

Design/methodology/approach

Newspaper articles and books are examined as are relevant reports by various regulatory authorities and academic institutions.

Findings

The effectiveness of legal mechanisms in the recovery of stolen assets may be affected by issues such as the difficulties in tracing illicit funds, the ambiguous nature of “value” as well as the rise in technology.

Research limitations/implications

There are limited data available in relation to the prevalence of corrupt officials along the Belt and Road Initiative and the statistical success in the recovery of stolen assets. Any discussions within this paper are based on the impressionistic observations of this author, which may not reflect the true state of affairs of the Belt and Road Initiative.

Practical implications

Those who are interested in examining how authorities could recover stolen assets from and for China will have an interest in this topic.

Originality/value

The value of the paper is to demonstrate the difficulties in recovering stolen assets for and from China.

Details

Journal of Financial Crime, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1359-0790

Keywords

Article
Publication date: 5 May 2023

Rakesh Sai Kumar Mandala and R. Ramesh Nayaka

This paper aims to identify modern construction techniques for affordable housing, such as prefabrication and interlocking systems, that can save time and cost while also…

Abstract

Purpose

This paper aims to identify modern construction techniques for affordable housing, such as prefabrication and interlocking systems, that can save time and cost while also providing long-term sustainable benefits that are desperately needed in today's construction industry.

Design/methodology/approach

The need for housing is growing worldwide, but traditional construction cannot cater to the demand due to insufficient time. There should be some paradigm shift in the construction industry to supply housing to society. This paper presented a state-of-the-art review of modern construction techniques practiced worldwide and their advantages in affordable housing construction by conducting a systematic literature review and applying the backward snowball technique. The paper reviews modern prefabrication techniques and interlocking systems such as modular construction, formwork systems, light gauge steel/cold form steel construction and sandwich panel construction, which have been globally well practiced. It was understood from the overview that modular construction, including modular steel construction and precast concrete construction, could reduce time and costs efficiently. Further enhancement in the quality was also noticed. Besides, it was observed that light gauge steel construction is a modern phase of steel that eases construction execution efficiently. Modern formwork systems such as Mivan (Aluminium Formwork) have been reported for their minimum construction time, which leads to faster construction than traditional formwork. However, the cost is subjected to the repetitions of the formwork. An interlocking system is an innovative approach to construction that uses bricks made of sustainable materials such as earth that conserve time and cost.

Findings

The study finds that the prefabrication techniques and interlocking system have a lot of unique attributes that can enable the modern construction sector to flourish. The study summarizes modern construction techniques that can save time and cost, enhancing the sustainability of construction practices, which is the need of the Indian construction industry in particular.

Research limitations/implications

This study is limited to identifying specific modern construction techniques for time and cost savings, lean concepts and sustainability which are being practiced worldwide.

Practical implications

Modern formwork systems such as Mivan (Aluminium Formwork) have been reported for their minimum construction time which leads to faster construction than traditional formwork.

Social implications

The need for housing is growing rapidly all over the world, but traditional construction cannot cater to the need due to insufficient time. There should be some paradigm shift in the construction industry to supply housing to society.

Originality/value

This study is unique in identifying specific modern construction techniques for time and cost savings, lean concepts and sustainability which are being practiced worldwide.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 10 November 2023

Hayford Pittri, Kofi Agyekum, Edward Ayebeng Botchway, João Alencastro, Olugbenga Timo Oladinrin and Annabel Morkporkpor Ami Dompey

The design for deconstruction (DfD) technique, a contemporaneous solution to demolition by optimizing disassembly activities to enable reuse, has recently emerged with several…

Abstract

Purpose

The design for deconstruction (DfD) technique, a contemporaneous solution to demolition by optimizing disassembly activities to enable reuse, has recently emerged with several promises to promote the circular economy. However, little attention has been given to its implementation among design professionals, especially in the Global South. Therefore, this study aims to explore the drivers for DfD implementation among design professionals in the Ghanaian construction industry (GCI).

Design/methodology/approach

The study adopted a mixed research approach (explanatory sequential design) with an initial quantitative instrument phase, followed by a qualitative data collection phase. Data from the survey were analyzed using mean, standard deviation, one-sample t-Test, and normalization value (NV) test after a review of pertinent literature. These data were then validated through semistructured interviews with ten design professionals with in-depth knowledge of DfD.

Findings

The findings revealed that although all ten drivers are important, the eight key drivers for the DfD implementation were identified as, in order of importance, “Availability of computer software applications regarding DfD,” “Inclusion of DfD in the formal education of design professionals,” “Increasing public awareness of the concept of DfD,” “Organizing workshops/seminars for design professionals on the concept of DfD,” “Availability of DfD training,” “Regulation regarding DfD,” “Industry guidance regarding DfD” and “Establishing a market for salvaged construction components.”

Originality/value

This study's findings provide insights into an under-investigated topic in Ghana and offer new and additional information and insights into the current state-of-the-art on the factors that drive DfD implementation.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 19 June 2023

Ghania Mirouzi and Amina Houda

The objective of this research is to evaluate the influence of mineral additions on the mechanical performances of polymer concrete. This study aims to propose a novel approach…

Abstract

Purpose

The objective of this research is to evaluate the influence of mineral additions on the mechanical performances of polymer concrete. This study aims to propose a novel approach formulation of polymer concrete based on reduction in the quantity of the binder and disposal of large quantities of industrial by-products and household waste such as the marble, the brick and silica fume whose valuation in polymer concrete could be an interesting ecological and economical alternative. The incorporation of a rate of 10% brick powder affects the distribution of pores inside polymer concrete, that is, the pore diameters become thinner and decrease and the porosity becomes evenly distributed. The recycled mineral brick powder addition in polymer concrete mix improved the mechanical properties.

Design/methodology/approach

This polymer concrete was prepared by using polyester resin and two different types of sand, following a new formulation based on an empirical method. Furthermore, the optimal binder percentage was of 20% resin and a mixture of 52% dune sand and 48% quarry sand according to the Abrams method. To achieve our objective, five rates (from 2% to 10%) of brick powder, marble powder and silica fume were examined. Afterwards, its mechanical characteristics were evaluated via a three-point flexural with compressive resistance. The findings indicated that the addition of brick, marble and silica fume to polymer concrete increases the flexural strength with 21.84%, 12.76% and 9.07%, respectively.

Findings

Concerning the compressive strength, the best resistance is that of polymer concretes based on brick powder, and this economic formulation of polymer concrete serves the optimal cost/resistance ratio criteria. It allows an improvement in the mechanical resistance of concrete are obtained by adding brick powder that exceed that of the reference concrete.

Originality/value

In the past few decades, there has been several contribution concerning the subject of the reduction of the binder quantity in polymer concretes and adding the industrial and household wastes. However, previous studies revolving around the same area disregarded the effect of the brick powder, which appears scientifically of great importance for enriching the literature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 June 2023

Argaw Gurmu and Mani Pourdadash Miri

Several factors influence the costs of buildings. Thus, identifying the cost significant factors can assist to improve the accuracy of project cost forecasts during the planning…

Abstract

Purpose

Several factors influence the costs of buildings. Thus, identifying the cost significant factors can assist to improve the accuracy of project cost forecasts during the planning phase. This paper aims to identify the cost significant parameters and explore the potential for improving the accuracy of cost forecasts for buildings using machine learning techniques and large data sets.

Design/methodology/approach

The Australian State of Victoria Building Authority data sets, which comprise various parameters such as cost of the buildings, materials used, gross floor areas (GFA) and type of buildings, have been used. Five different machine learning regression models, such as decision tree, linear regression, random forest, gradient boosting and k-nearest neighbor were used.

Findings

The findings of the study showed that among the chosen models, linear regression provided the worst outcome (r2 = 0.38) while decision tree (r2 = 0.66) and gradient boosting (r2 = 0.62) provided the best outcome. Among the analyzed features, the class of buildings explained about 34% of the variations, followed by GFA and walls, which both accounted for 26% of the variations.

Originality/value

The output of this research can provide important information regarding the factors that have major impacts on the costs of buildings in the Australian construction industry. The study revealed that the cost of buildings is highly influenced by their classes.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 13