Search results

1 – 10 of 17
Article
Publication date: 12 March 2024

Shuowen Yan, Pu Xue, Long Liu and M.S. Zahran

This study aims to investigate the design and optimization of landing gear buffers to improve the landing-phase comfort of civil aircraft.

Abstract

Purpose

This study aims to investigate the design and optimization of landing gear buffers to improve the landing-phase comfort of civil aircraft.

Design/methodology/approach

The vibration comfort during the landing and taxiing phases is calculated and evaluated based on the flight-testing data for a type of civil aircraft. The calculation and evaluation are under the guidance of the vibration comfort standard of GB/T13441.1-2007 and related files. The authors establish here a rigid-flexible coupled multibody dynamics finite element model of one full-size aircraft. Furthermore, the authors also implement a dynamic simulation for the landing and taxiing processes. Also, an analysis of how the main parameters of the buffers affect the vibration comfort is presented. Finally, the optimization of the single-chamber and double-chamber buffers in the landing gear is performed considering vibration comfort.

Findings

The double-chamber buffer with optimized parameters in landing gear can improve the vibration comfort of the aircraft during the landing and taxiing phases. Moreover, the comfort index can be increased by 25.6% more than that of a single-chamber type.

Originality/value

To the best of the authors’ knowledge, this study first investigates the evaluation methods and evaluation indexes on the aircraft vibration comfort, then further conducts the optimization of the parameters of landing gear buffer with different structures, so as to improve the comfort of aircraft passengers during landing process. Most of the current studies on aircraft landing gear have focused on the strength and safety of the landing gear, with very limited research on cabin vibration comfort during landing and subsequent taxiing because of the coupling of runway surface unevenness and airframe vibration.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 March 2024

Amar Benkhaled, Amina Benkhedda, Braham Benaouda Zouaoui and Soheyb Ribouh

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However…

Abstract

Purpose

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However, the existing methods for fuel reduction often rely on complex experimental calculations and data extraction from embedded systems, making practical implementation challenging. To address this, this study aims to devise a simple and accessible approach using available information.

Design/methodology/approach

In this paper, a novel analytic method to estimate and optimize fuel consumption for aircraft equipped with jet engines is proposed, with a particular emphasis on speed and altitude parameters. The dynamic variations in weight caused by fuel consumption during flight are also accounted for. The derived fuel consumption equation was rigorously validated by applying it to the Boeing 737–700 and comparing the results against the fuel consumption reference tables provided in the Boeing manual. Remarkably, the equation yielded closely aligned outcomes across various altitudes studied. In the second part of this paper, a pioneering approach is introduced by leveraging the particle swarm optimization algorithm (PSO). This novel application of PSO allows us to explore the equation’s potential in finding the optimal altitude and speed for an actual flight from Algiers to Brussels.

Findings

The results demonstrate that using the main findings of this study, including the innovative equation and the application of PSO, significantly simplifies and expedites the process of determining the ideal parameters, showcasing the practical applicability of the approach.

Research limitations/implications

The suggested methodology stands out for its simplicity and practicality, particularly when compared to alternative approaches, owing to the ready availability of data for utilization. Nevertheless, its applicability is limited in scenarios where zero wind effects are a prevailing factor.

Originality/value

The research opens up new possibilities for fuel-efficient aviation, with a particular focus on the development of a unique fuel consumption equation and the pioneering use of the PSO algorithm for optimizing flight parameters. This study’s accessible approach can pave the way for more environmentally conscious and economical flight operations.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 March 2024

Tugrul Oktay and Yüksel Eraslan

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design…

Abstract

Purpose

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design conducted with optimization, computational fluid dynamics (CFD) and machine learning approaches.

Design/methodology/approach

The main wing of the UAV is redesigned with morphing wingtips capable of dihedral angle alteration by means of folding. Aircraft dynamic model is derived as equations depending only on wingtip dihedral angle via Nonlinear Least Squares regression machine learning algorithm. Data for the regression analyses are obtained by numerical (i.e. CFD) and analytical approaches. Simultaneous perturbation stochastic approximation (SPSA) is incorporated into the design process to determine the optimal wingtip dihedral angle and proportional-integral-derivative (PID) coefficients of the control system that maximizes autonomous flight performance. The performance is defined in terms of trajectory tracking quality parameters of rise time, settling time and overshoot. Obtained optimal design parameters are applied in flight simulations to test both longitudinal and lateral reference trajectory tracking.

Findings

Longitudinal and lateral autonomous flight performances of the UAV are improved by redesigning the main wing with morphing wingtips and simultaneous estimation of PID coefficients and wingtip dihedral angle with SPSA optimization.

Originality/value

This paper originally discusses the simultaneous design of innovative morphing wingtip and UAV flight control system for autonomous flight performance improvement. The proposed simultaneous design idea is conducted with the SPSA optimization and a machine learning algorithm as a novel approach.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 April 2024

Jibran Abbas and Ashish Khare

According to regulations, aircraft must be in an airworthy condition before they can be operated. To ensure airworthiness, they must be maintained by an approved component…

Abstract

Purpose

According to regulations, aircraft must be in an airworthy condition before they can be operated. To ensure airworthiness, they must be maintained by an approved component maintenance organisation. This study is aimed to identify potential errors that may arise during the final inspection and certification process of aircraft components, categorise them, determine their consequences and quantify the associated risks. Any removed aircraft components must be sent to an approved aircraft component maintenance organisation for further maintenance and issuance of European Union Aviation Safety Agency (EASA) Form 1. Thereafter, a final inspection and certification process must be conducted by certifying staff to receive an EASA Form 1. This process is crucial because any errors during this stage can result in the installation of unsafe components in an aircraft.

Design/methodology/approach

The Systematic Human Error Reduction and Prediction Approach (SHERPA) method was used to identify potential errors. This method involved a review of the procedures of three maintenance organisations, individual interviews with ten subject matter experts and a consensus group of 14 certifying staff from different maintenance organisations to achieve the desired results.

Findings

In this study, 39 potential errors were identified during the final inspection and certification process. Furthermore, analysis revealed that 48.7% of these issues were attributed to checking errors, making it the most common type of error observed.

Originality/value

This study pinpoints the potential errors in the final inspection and certification of aircraft components. It offers maintenance organisations a roadmap to assess procedures, implement preventive measures and reduce the likelihood of these errors.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 19 April 2024

Júlia Palik

What kinds of support do interstate rivals provide to domestic actors in ongoing civil wars? And how do domestic actors utilize the support they receive? This chapter answers…

Abstract

What kinds of support do interstate rivals provide to domestic actors in ongoing civil wars? And how do domestic actors utilize the support they receive? This chapter answers these questions by comparing Iranian and Saudi military and non-military (mediation, foreign aid and religious soft-power promotion) support to the Houthis and to the Government of Yemen (GoY) during the Saada wars (2004–2010) and the internationalized civil war (2015–2018). It also focuses on the processes through which the GoY and the Houthis have utilized this support for their own strategic purposes. This chapter applies a structured, focused comparison methodology and relies on data from a review of both primary and secondary sources complemented by 14 interviews. This chapter finds that there were less external interventions in the conflict in Saada than in the internationalized civil war. During the latter, a broader set of intervention strategies enabled further instrumentalization by domestic actors, which in turn contributed to the protracted nature of the conflict. This chapter contributes to the literature on interstate rivalry and third-party intervention. The framework of analysis is applicable to civil wars that experience intervention by rivals, such as Syria or Libya.

Details

A Comparative Historical and Typological Approach to the Middle Eastern State System
Type: Book
ISBN: 978-1-83753-122-6

Keywords

Expert briefing
Publication date: 17 April 2024

A major milestone was showcased in February, as KAAN, the country’s first domestically produced fifth-generation combat aircraft, made its maiden flight. The aircraft is equipped…

Open Access
Article
Publication date: 16 March 2023

Imoh Antai and Roland Hellberg

The total defence (TD) concept constitutes a joint endeavour between the military forces and civil defence structures within a TD state. Logistics is essential for such joint…

Abstract

Purpose

The total defence (TD) concept constitutes a joint endeavour between the military forces and civil defence structures within a TD state. Logistics is essential for such joint collaboration to work; however, the mismatch between military and civil defence logistics structures poses challenges for such joint collaboration. The purpose of this paper is to identify logistics concept areas within the TD framework that allow for military and civil defence collaborations from a logistics operations perspective.

Design/methodology/approach

Pattern-matching analysis is used to compare patterns found in the investigated case with those prescribed from the literature and predicted to occur. The study seeks to identify logistics concepts within TD from the literature and from the events describing the Swedish response to the Covid-19 pandemic. Pattern matching thus allows for the reconciliation of logistics concepts from the literature to descriptions of how the response was handled, albeit under a TD framework.

Findings

Findings show quite distinct foci between the theoretical and observational realms in terms of logistics applications. While the theoretical realm identifies four main logistics concepts, the observational realm identifies five logistics conceptual themes. This goes on to show an incongruence between the military and civil parts of the TD.

Research limitations/implications

This study provides basis for further research into the applications and management of logistics activity within TD and emergency response.

Originality/value

Logistics applications within TD have not, until now, received much attention in the literature. Given this knowledge gap, this study is of original value.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 14 no. 2
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 16 April 2024

P. Gunasekar, Anderson A. and Praveenkumar T.R.

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and…

Abstract

Purpose

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and testing of bamboo natural fiber-based composites enhanced with SiO2 nanoparticles.

Design/methodology/approach

The investigation involved fabricating specimens with varying nanoparticle compositions (0, 10 and 20%) and conducting tensile, flexural, impact and fracture toughness tests. Results indicated significant improvements in mechanical properties with the addition of nanoparticles, particularly at a 10% composition level.

Findings

This study underscores the potential of natural fiber composites, highlighting their environmental friendliness, cost-effectiveness and improved structural properties when reinforced with nanoparticles. The findings suggest an optimal ratio for nanoparticle integration, emphasizing the critical role of precise mixing proportions in achieving superior composite performance.

Originality/value

The tensile strength, flexural strength, impact resistance and fracture toughness exhibited notable enhancements compared with the 0 and 20% nanoparticle compositions. The 10% composition showed the most promising outcomes, showcasing increased strength across all parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 July 2022

Hiwa Esmaeilzadeh, Alireza Rashidi Komijan, Hamed Kazemipoor, Mohammad Fallah and Reza Tavakkoli-Moghaddam

The proposed model aims to consider the flying hours as a criterion to initiate maintenance operation. Based on this condition, aircraft must be checked before flying hours…

Abstract

Purpose

The proposed model aims to consider the flying hours as a criterion to initiate maintenance operation. Based on this condition, aircraft must be checked before flying hours threshold is met. After receiving maintenance service, the model ignores previous flying hours and the aircraft can keep on flying until the threshold value is reached again. Moreover, the model considers aircraft age and efficiency to assign them to flights.

Design/methodology/approach

The aircraft maintenance routing problem (AMRP), as one of the most important problems in the aviation industry, determines the optimal route for each aircraft along with meeting maintenance requirements. This paper presents a bi-objective mixed-integer programming model for AMRP in which several criteria such as aircraft efficiency and ferrying flights are considered.

Findings

As the solution approaches, epsilon-constraint method and a non-dominated sorting genetic algorithm (NSGA-II), including a new initializing algorithm, are used. To verify the efficiency of NSGA-II, 31 test problems in different scales are solved using NSGA-II and GAMS. The results show that the optimality gap in NSGA-II is less than 0.06%. Finally, the model was solved based on real data of American Eagle Airlines extracted from Kaggle datasets.

Originality/value

The authors confirm that it is an original paper, has not been published elsewhere and is not currently under consideration of any other journal.

Article
Publication date: 20 March 2024

Ayse KUCUK YILMAZ, Konstantinos N. MALAGAS and Triant G. FLOURIS

This study aims to develop an inclusive, multidisciplinary, flexible and organizationally adaptable safety risk management framework, including diversity management, that will be…

Abstract

Purpose

This study aims to develop an inclusive, multidisciplinary, flexible and organizationally adaptable safety risk management framework, including diversity management, that will be implemented to ensure safety is and remains at the desired level. If the number of incidents and potential incidents that could lead to accidents and their impact rates are to be reduced operationally and administratively, aviation safety risks and sources of risk must be better understood, sources of risk identified, and the safety risk management framework designed in an organization-specific and organization-wide sustainable way. At this point, it is necessary to draw the conceptual framework well and to define the boundaries of the concepts well. In this study, a framework model that can be adapted to the organization is proposed to optimize the management of risks and provide both efficient and effective resource allocation and organizational structure design in its operations and management functions.

Design/methodology/approach

The qualitative research method – triple techniques – was deemed appropriate for this study, which aims to identify, examine, interpret and develop the situations of safety management models. In this context, document analysis, business process modeling technique and Delphi techniques from qualitative research methods were used via integration as the methodology of this research.

Findings

To manage dynamic civil aviation management activities and business processes effectively and efficiently, the risk management process is the building block of the “Proposed Process Model” that supports the decision-making processes of aviation organizations and managers. This “Framework Conceptual Model” building block also helps build capacity and resilience by enabling continuous development, organizational learning, and flexible structuring.

Research limitations/implications

This research is limited to air transportation and aviation safety management issues. This research is limited specifically to a safety-based risk management framework for the aviation industry. This research may have social implications as source saving, optimum resource use and capacity building will make a contribution to society and add value besides operational and practical implementation.

Social implications

This research may contribute to more safe operations and functions in the aviation industry.

Originality/value

Management and academia may gain considerable support from this research to manage their safety risks via a corporate-tailored risk management framework, both improving resilience and developing corporate capacity. With this model presented, decision-makers will have a guiding structure that can optimally manage the main risk types that may be encountered in the safety risk in the fields of suppliers, manufacturers, demand changes, logistics, information management, environmental, legal and regulatory. Existing studies in the literature are generally in the form of algorithms and cannot be used as a decision-making support tool. This model aims to fill the gap in the literature. In addition, added value may be created by applying this model to optimum management safety risks in the real aviation industry and its related sectors.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 17