Search results

1 – 10 of 349
Article
Publication date: 13 June 2016

Lijesh K.P., Muzakkir S.M., Harish Hirani and Gananath Doulat Thakre

The journal bearings subjected to heavy load and slow speed operate in mixed lubrication regime causing contact between the interacting surfaces and resulting in wear. Complexity…

Abstract

Purpose

The journal bearings subjected to heavy load and slow speed operate in mixed lubrication regime causing contact between the interacting surfaces and resulting in wear. Complexity of wear behavior and lack of unifying theory/model make wear-control very challenging.

Design/methodology/approach

In the present research work, theoretical and experimental investigations have been conducted to explore the effect of grooving arrangements on the wear behavior of journal bearing operating in mixed lubrication regime. The theoretical model of Hirani (2005) that uses mass conserving cavitation algorithm has been used to determine the bearing eccentricity for different groove arrangements (with varying groove location and extent) for identifying a groove arrangement that minimizes the wear. The wear tests on the grooved bearings were conducted after suitable running-in of the new bearings on a fully automated journal bearing test set-up. A load and speed combination required to operate the bearing in mixed lubrication was used. The performance of different arrangement of bearing was evaluated by measuring their weight loss after the test.

Findings

Wear was significantly reduced with the use of proper groove arrangement for a bearing operating in mixed lubrication regime.

Originality/value

The improvement in bearing performance by providing grooves has been the subject matter of several studies in the past, but these studies were confined to the hydrodynamic operative regime of the bearing. In the present work, seven different combinations of axial and radial groove arrangement were tried, which has not been reported in any other work.

Details

Industrial Lubrication and Tribology, vol. 68 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 March 2016

Fangwei Xie, Yaowen Tong, Diancheng Wu, Bing Zhang and Kaiyu Dai

The purpose of this paper is to study the influence of different cross-sectional shapes (rectangular, trapezoidal, oval and triangular) and layout forms of oil grooves (radial…

Abstract

Purpose

The purpose of this paper is to study the influence of different cross-sectional shapes (rectangular, trapezoidal, oval and triangular) and layout forms of oil grooves (radial, circumferential, inclined, compound, helical and double-helical), and determine the optimal section shape and layout form of oil grooves on the temperature field.

Design/methodology/approach

Heat conduction theory model was established based on startup characteristics and friction heat principle of hydro-viscous clutch (HVC), and then the theoretical expression of angular velocity of the friction pair and control pressure were deduced, and the heat flux and its distribution on friction disk and separator disk were calculated. Finally, the finite element method was used to solve the temperature field of the friction pair.

Findings

The studies show that the circumferential oil groove got the highest temperature, and on the surface of all other structures, hot spots appear with different sizes and temperatures, and the maximum temperature difference in the friction zone is about 3°C, and in the oil groove zone is about 16°C, wherein the compound oil groove has the lowest average temperature. This research shows that the compound oil groove with rectangular cross-section is the best choice for the friction pair.

Originality/value

In this paper, it was found that the compound oil groove with rectangular cross-section is the best choice for the friction pair, and it provided a favorable theory reference and technical support for the structural design of the friction pair and optimized design of the high-power HVC.

Details

Industrial Lubrication and Tribology, vol. 68 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 August 2018

Peng-hui Wu, Xiaojun Zhou, Chenlong Yang, Haoliang Lv, Tianhao Lin and Xuelei Wu

The purpose of this paper is to reduce the drag loss and study the effects of operating conditions and groove parameters such as flow rate and temperature of automatic…

Abstract

Purpose

The purpose of this paper is to reduce the drag loss and study the effects of operating conditions and groove parameters such as flow rate and temperature of automatic transmission fluid, clearance between plates, groove depth and groove ratio on the drag torque of a wet clutch for vehicles, parametric analysis of the drag torque model of wet multi-plate friction clutch with groove consideration.

Design/methodology/approach

Both experimental and numerical research was carried out in this work. Parametric groove models, full film lubrication flow model and pressure distribution model are established to investigate the effects of the grooves on drag torque of a wet clutch. Multigrid method is used to simplify the solution.

Findings

In this paper, a drag torque model of a wet multi-plate friction clutch based on the basic theory of viscous fluid dynamics is examined through experimental and numerical methods that take grooves into account, and the change trend of drag torque with operating conditions and groove parameters is analyzed.

Originality/value

Multigrid method is used to solve the governing equations, which simplifies the solution process because of the restrictions and interpolation operations between the adjacent layers of coarser and fine grids. These works provide insight into the effect regularity of operating conditions and groove parameters on drag torque of a wet multi-plate friction clutch. Furthermore, variable test conditions and sufficient experimental data are the main functions in the experimental research.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 March 2020

Guiyue Kou, Xinghu Li, Yan Wang, Mouyou Lin, Chunsen Tan and Mingfei Mou

The purpose of this paper is to enhance film stiffness and control seal leakage of conventional spiral groove dry gas seal (S-DGS) at a high-speed condition by introducing a new…

Abstract

Purpose

The purpose of this paper is to enhance film stiffness and control seal leakage of conventional spiral groove dry gas seal (S-DGS) at a high-speed condition by introducing a new type superellipse surface groove.

Design/methodology/approach

The steady-state performance and dynamic characteristics of superellipse groove dry gas seal and S-DGS are compared numerically at a high-speed condition. The optimized superellipse grooves for maximum steady-state film stiffness and dynamic stiffness coefficient are obtained.

Findings

Properly designed superellipse groove dry gas seal provides remarkable larger steady-state film stiffness, dynamic stiffness coefficient and lower leakage rate at a high-speed condition compared to a typical S-DGS. The optimal values of first superellipse coefficient for maximum steady and dynamic stiffness are 1.3 and 1.4, whereas the optimal values of second superellipse coefficient for which are 1.4 and 2.0, respectively.

Originality/value

A new type of molded line, namely, superellipse curve, is proposed to act as the boundary lines of surface groove of dry gas seal, as an alternative of typical logarithm helix. The conclusions provide references for surface groove design with larger stiffness and lower leakage rate at a high-speed condition.

Details

Industrial Lubrication and Tribology, vol. 72 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 October 2018

Fangwei Xie, Xinjian Guo, Diancheng Wu, Bing Zhang, Xudong Zheng, Dengshuai Wang and Yun Wang

In this paper, a kind of an oil groove structure which could improve the transmission torque of an oil film was designed, i.e. the width and depth of oil groove gradually decrease…

Abstract

Purpose

In this paper, a kind of an oil groove structure which could improve the transmission torque of an oil film was designed, i.e. the width and depth of oil groove gradually decrease with the increase in the radius.

Design/methodology/approach

Effects of the structural parameters of the oil groove on the hydro-viscous drive (HVD) characteristics with variable rotational speed were investigated by means of numerical calculation.

Findings

Research results show that with the decrease of the width and depth of the oil groove at the outer diameter, transmission torque increases, while the temperature is almost unchanged. Keeping the effective area unchanged, comparing the transmitted torque under the oil groove angle θ2 = 0.5° and θ2 = 4.5°, the former was almost 200 per cent of the latter; the torque transmitted with h2 = 0.05 mm was almost 150 per cent of that with h2 = 0.2 mm.

Originality/value

In this paper, the authors analyze the friction surface of the friction plate between the oil groove, oil distribution and oil film transfer torque from the oil groove structure parameters and found methods to improve the transmission torque. For the first time, the influence of the structural parameters of oil groove on the characteristics of HVD was studied under the condition of variable rotational speed, and a better method to improve the transmission torque was proposed.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 November 2006

Ludovico Morais and Luís Andrade Ferreira

To provide an optimization methodology for the journal bearings of mass balancing systems, that consists in a sensibility analysis of the journal bearings design parameters in the…

Abstract

Purpose

To provide an optimization methodology for the journal bearings of mass balancing systems, that consists in a sensibility analysis of the journal bearings design parameters in the journal bearing operating parameters, as well as the comparison and selection of the journal bearing materials and the selection of the lubrication grooves suitable.

Design/methodology/approach

The methodology followed comprehends three steps. The first step is the one by one variation of the journal bearing design parameters (radial clearance, journal bearing diameter and journal bearing length) to analyse, independently, their influence on the journal bearing operating parameters (minimum film thickness, maximum pressure and power loss). The second step is the analysis and comparison of the metallic materials that can be used in the journal bearings. The third step is the selection of the lubrication groove.

Findings

Applying this methodology it is shown that increasing the radial clearance the minimum film thickness increases and the maximum pressure and the power loss decrease, increasing the journal bearing length the minimum film thickness and the power loss increase and the maximum pressure decreases, at last, increasing the journal bearing diameter the minimum film thickness, the maximum pressure and the power loss increase. The materials that should be used are the white metals (Babbitts). And the journal bearing lubrication grooves should be circumferential.

Practical implications

This method gives the user the possibility to eliminate potential failures of the journal bearings, or simply to make a sensibility study of the influence of the journal bearing design parameters in the operating ones.

Originality/value

This paper provides a simple and objective methodology to make a sensibility analysis of the influence of the journal bearing design parameters in the operating parameters, as well as select the journal bearing materials and lubrication grooves.

Details

Industrial Lubrication and Tribology, vol. 58 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 September 2023

Zengli Wang, Qingyang Wang, Muming Hao, Xiaoying Li and Kewei Liu

The purpose of this study is to investigate the sealing performance of S-CO2 dry gas seals (DGSs) by considering the effects of pressure-induced deformation, thermal deformation…

Abstract

Purpose

The purpose of this study is to investigate the sealing performance of S-CO2 dry gas seals (DGSs) by considering the effects of pressure-induced deformation, thermal deformation and coupling deformation.

Design/methodology/approach

A hydrodynamic lubrication flow model of S-CO2 DGS was established, and the model was solved using the finite difference and finite element methods. The pressure-induced deformation and thermal deformation of the sealing ring, as well as the sealing performance under the effects of pressure-induced deformation, thermal deformation and coupling deformation, were obtained.

Findings

The deformation of the sealing ring is mainly thermal deformation. The influence of pressure-induced deformation on leakage and gas film stiffness is greater than that of thermal deformation and coupling deformation. However, thermal deformation has a greater impact on friction torque and minimum film thickness than pressure-induced deformation and coupling deformation. The influence of deformations on sealing performance is important.

Originality/value

The sealing performance of S-CO2 DGSs was analyzed considering the effect of pressure-induced deformation, thermal deformation and coupling deformation, which can provide a theoretical basis for S-CO2 DGS optimization design.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2023-0120/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 September 2015

Chuanjun Liao, Xibao Xu, Hongrong Fang, Hongrui Wang and Man Man

The purpose of this paper is to develop a leakage model of metallic static seals, which can be used to accurately predict the leakage rate and study the corresponding seal…

Abstract

Purpose

The purpose of this paper is to develop a leakage model of metallic static seals, which can be used to accurately predict the leakage rate and study the corresponding seal characteristics. The metallic static seal is effectively applied to severe rugged environments where conventional seals cannot meet the needs. More research efforts for deepening the understanding of its seal characteristics are important for its effective and safe applications, of which the study about its leak is one key component.

Design/methodology/approach

In the microscopic observations of the turning surface that is general in the processing of flange surfaces, it is found that the spiral morphology is dominant, which had been also obtained by other researches. There are two potential leakage paths for the flange surface of spiral morphology, one is the radial direction perpendicular to the spiral ridges and the other is the circumferential direction along the spiral groove. Based on the microgeometry characteristics of spiral morphology, the micromorphology of turning flange surface is simplified for the calculation of leakage rate, and the simplified methods of the radial and circumferential leakage paths are presented separately. The topography of flange surface studied in this paper is actually measured, and the Abbott bearing surface curve is adopted to represent the micro-profiles parameters. The radial and circumferential leakage models are further developed based on the assumption of laminar flow of the viscous compressible gas.

Findings

The experiments used to verify the leakage models were carried out, and the experimental values are well agreed with the calculated values. As the contact pressure increases, the change rules of both radial and circumferential leakage rates are obtained and the obvious transition from radial leak to circumferential leak can be found. Using the proposed leakage models, the effects of the key micro-profiles parameters on the leakage rates are studied, and some specific conclusions are given simultaneously, which are favorable for the theoretical study and practical application of the metallic static seal.

Practical implications

By the interpretations of the micromorphology characteristics of turning flange surface, the leakage mechanism of the metallic static seal is further made clear. The proposed leakage model reveals the relationships between the key micro-profiles parameters and some sealing performances about the leakage and can predict the leakage rates of the metallic static seal used in various working conditions.

Originality/value

For the metallic static seal, the simplification of the radial leakage path and the radial leakage model are put forward for the first time, so the total leakage model can be systematically reported based on the micromorphology characteristics of turning flange surface. The effects of the key micro-profiles parameters on the seal behaviors including of the leak rate, critical contact pressure and transition from radial leak to circumferential leak etc are also clarified firstly.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2020

Ming Feng, Hongyang Hu and Tianming Ren

To improve the load capacity and stability of gas foil journal bearings (GFJB), this paper aims to propose a novel GFJB with taper-grooved top foil.

Abstract

Purpose

To improve the load capacity and stability of gas foil journal bearings (GFJB), this paper aims to propose a novel GFJB with taper-grooved top foil.

Design/methodology/approach

A modified bump stiffness model is established considering rounding and friction. By considering the variation of clearance in the circumferential and axial direction, the static and dynamic characteristics of the novel bearing are calculated using the finite difference method, and perturbation method, respectively. The bearing performance under different groove parameters is studied and compared to the traditional bearings.

Findings

The results show that this novel GFJB can bring multi-extra local dynamic pressure and decrease the gas end leakage, which improves the static and dynamic properties. Moreover, as the increment of groove depth, the load capacity and direct stiffness are reinforced. There is an optimal groove width to maximize the load capacity, and the taper-groove is more beneficial to the improvement of bearing performance than other groove shapes. For the novel GFJB (Ng = 6, Hg = 10µm), the load capacity and direct stiffness increase by about 6.67 and 13.5 per cent, respectively. The stability threshold speed (STS) of a rotor supported by the novel bearings is also increased.

Originality/value

The performance of the presented novel GFJB is enhanced immensely compared to the traditional bearings, and the results are expected to be helpful to bearing designers, researchers and academicians concerned.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0307.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 July 2018

Mu-ming Hao, Yun-lei Wang, Zhen-tao Li and Xin-hui Sun

The purpose of this paper is to investigate the effects of surface topography, including surface roughness, circumferential waviness and radial taper, on hydrodynamic performance…

Abstract

Purpose

The purpose of this paper is to investigate the effects of surface topography, including surface roughness, circumferential waviness and radial taper, on hydrodynamic performance of liquid film seals considering cavitation.

Design/methodology/approach

A mathematical model of liquid film seals with surface topography was established based on the mass-conservative algorithm. Liquid film governing equation was discretized by the finite control volume method and solved by the Gauss–Seidel relaxation iterative algorithm, and the hydrodynamic performance parameters of liquid film seals were obtained considering surface roughness, circumferential waviness and radial taper separately.

Findings

The results indicate that the values of load-carrying capacity and frication torque are affected by the surface topography in varying degrees, but the effect is limited.

Originality/value

The results presented in the study are expected to aid in determining the optimum value of structural parameters for the optimum seal performance because of the realistic model which considers both surface topography and cavitation.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 349