Search results

1 – 10 of 38
Article
Publication date: 10 November 2022

Xinxing Yin, Juan Chen, Wenxin Yu, Yuan Huang, Wenxiang Wei, Xinjie Xiang and Hao Yan

This study aims to improve the complexity of chaotic systems and the security accuracy of information encrypted transmission. Applying five-dimensional memristive Hopfield neural…

Abstract

Purpose

This study aims to improve the complexity of chaotic systems and the security accuracy of information encrypted transmission. Applying five-dimensional memristive Hopfield neural network (5D-HNN) to secure communication will greatly improve the confidentiality of signal transmission and greatly enhance the anticracking ability of the system.

Design/methodology/approach

Chaos masking: Chaos masking is the process of superimposing a message signal directly into a chaotic signal and masking the signal using the randomness of the chaotic output. Synchronous coupling: The coupled synchronization method first replicates the drive system to get the response system, and then adds the appropriate coupling term between the drive The synchronization error and the coupling term of the system will eventually converge to zero with time. The synchronization error and coupling term of the system will eventually converge to zero over time.

Findings

A 5D memristive neural network is obtained based on the original four-dimensional memristive neural network through the feedback control method. The system has five equations and contains infinite balance points. Compared with other systems, the 5D-HNN has rich dynamic behaviors, and the most unique feature is that it has multistable characteristics. First, its dissipation property, equilibrium point stability, bifurcation graph and Lyapunov exponent spectrum are analyzed to verify its chaotic state, and the system characteristics are more complex. Different dynamic characteristics can be obtained by adjusting the parameter k.

Originality/value

A new 5D memristive HNN is proposed and used in the secure communication

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 21 March 2023

Manikandan R. and Raja Singh R.

The purpose of this paper is to prevent the destruction of other parts of a wind energy conversion system because of faults, the diagnosis of insulated-gate bipolar transistor…

Abstract

Purpose

The purpose of this paper is to prevent the destruction of other parts of a wind energy conversion system because of faults, the diagnosis of insulated-gate bipolar transistor (IGBT) faults has become an essential topic of study. Demand for sustainable energy sources has been prompted by rising environmental pollution and energy requirements. Renewable energy has been identified as a viable substitute for conventional fossil fuel energy generation. Because of its rapid installation time and adaptable expenditure for construction scale, wind energy has emerged as a great energy resource. Power converter failure is particularly significant for the reliable operation of wind power conversion systems because it not only has a high yearly fault rate but also a prolonged downtime. The power converters will continue to operate even after the failure, especially the open-circuit fault, endangering their other parts and impairing their functionality.

Design/methodology/approach

The most widely used signal processing methods for locating open-switch faults in power devices are the short-time Fourier transform and wavelet transform (WT) – based on time–frequency analysis. To increase their effectiveness, these methods necessitate the intensive use of computational resources. This study suggests a fault detection technique using empirical mode decomposition (EMD) that examines the phase currents from a power inverter. Furthermore, the intrinsic mode function’s relative energy entropy (REE) and simple logical operations are used to locate IGBT open switch failures.

Findings

The presented scheme successfully locates and detects 21 various classes of IGBT faults that could arise in a two-level three-phase voltage source inverter (VSI). To verify the efficacy of the proposed fault diagnosis (FD) scheme, the test is performed under various operating conditions of the power converter and induction motor load. The proposed method outperforms existing FD schemes in the literature in terms of fault coverage and robustness.

Originality/value

This study introduces an EMD–IMF–REE-based FD method for VSIs in wind turbine systems, which enhances the effectiveness and robustness of the FD method.

Content available
Article
Publication date: 29 September 2022

Kaiyuan Wu, Hao Huang, Ziwei Chen, Min Zeng and Tong Yin

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding…

Abstract

Purpose

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding power supply. So a novel and simplified implementation of digital high-power pulsed MIG welding power supply with LLC resonant converter is proposed in this work.

Design/methodology/approach

A simple parallel full-bridge LLC resonant converter structure is used to design the digital power supply with high welding current, low arc voltage, high open-circuit voltage and a wide range of arc loads, by effectively exploiting the variable load and high-power applications of LLC resonant converter.

Findings

The efficiency of each converter can reach up to 92.3%, under the rated operating condition. Notably, with proposed scheme, a short-circuit current mutation of 300 A can stabilize at 60 A within 8 ms. Furthermore, the pulsed MIG welding test shows that a stable welding process with 280 A peak current can be realized and a well-formed weld bead can be obtained, thereby verifying the feasibility of LLC resonant converter for pulsed MIG welding power supply.

Originality/value

The high efficiency, high power density and weak EMI of LLC resonant converter are conducive to the further optimization of pulsed MIG welding power supply. Consequently, a high performance welding power supply is implemented by taking adequate advantages of LLC resonant converter, which can provide equipment support for exploring better pulsed MIG welding processes.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 22 April 2024

Sami Barmada, Nunzia Fontana, Leonardo Sandrolini and Mattia Simonazzi

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to…

38

Abstract

Purpose

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to an ad-hoc design for specific applications.

Design/methodology/approach

The methodology used is both theoretical and numerical; it is based on circuit theory and on an optimization procedure.

Findings

The results show that when the knowledge of the current in each unit cell of a metasurface is needed, the most common approximations currently used are often not accurate. Furthermore, a procedure for the termination of a metasurface, with application-driven goals, is given.

Originality/value

This paper investigates the distribution of the currents in a 2D metamaterial realized with magnetically coupled resonant coils. Different models for the analysis of these structures are illustrated, and the effects of the approximations they introduce on the current values are shown and discussed. Furthermore, proper terminations of the resonators on the boundaries have been investigated by implementing a numerical optimization procedure with the purpose of achieving a uniform distribution of the resonator currents. The results show that the behavior of a metasurface (in terms of currents in each single resonator) depends on different properties; as a consequence, their design is not a trivial task and is dependent on the specific applications they are designed for. A design strategy, with lumped impedance termination, is here proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 August 2022

Britto Pari J., Mariammal K. and Vaithiyanathan D.

Filter design plays an essential role in most communication standards. The essential element of the software-defined radio is a channelizer that comprises several channel filters…

Abstract

Purpose

Filter design plays an essential role in most communication standards. The essential element of the software-defined radio is a channelizer that comprises several channel filters. Designing filters with lower complexity, minimized area and enhanced speed is a demanding task in currently prevailing communication standards. This study aims to propose an efficient reconfigurable residue number system (RNS)-based multiply-accumulate (MAC) channel filter for software radio receivers.

Design/methodology/approach

RNS-based pipelined MAC module for the realization of channel finite impulse response (FIR) filter architecture is considered in this work. Further, the use of a single adder and single multiplier for realizing the filter architecture regardless of the number of taps offers effective resource sharing. This design provides significant improvement in speed of operation as well as a reduction in area complexity.

Findings

In this paper, two major tasks have been considered: first, the RNS number conversion is performed in which the integer is converted into several residues. These residues are processed in parallel and are applied to the MAC-FIR filter architecture. Second, the MAC filter architecture involves pipelining, which enhances the speed of operation to a significant extent. Also, the time-sharing-based design incorporates a single partial product-based shift and add multiplier and single adder, which provide a low complex design. The results show that the proposed 16-tap RNS-based pipelined MAC sub-filter achieves significant improvement in speed as well as 89.87% area optimization when examined with the conventional RNS-based FIR filter structure.

Originality/value

The proposed MAC-FIR filter architecture provides good performance in terms of complexity and speed of operation because of the use of the RNS scheme with pipelining and partial product-based shift and adds multiplier and single adder when examining with the conventional designs. The reported architecture can be used in software radios.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 December 2022

Mohammad Fathi, Roya Amjadifard, Farshad Eshghi and Manoochehr Kelarestaghi

Photovoltaic (PV) systems are experiencing exponential growth due to environmental concerns, unlimited and ubiquitous solar energy, and starting-to-make-sense panel costs…

Abstract

Purpose

Photovoltaic (PV) systems are experiencing exponential growth due to environmental concerns, unlimited and ubiquitous solar energy, and starting-to-make-sense panel costs. Alongside designing more efficient solar panels, installing solar trackers and special circuitry for optimizing power delivery to the load according to a maximum power point tracking (MPPT) algorithm are other ways of increasing efficiency. However, it is critical for any efficiency increase to account for the power consumption of any amendments. Therefore, this paper aims to propose a novel tracker while using MPPT to boost the PV system's actual efficiency accounting for the involved costs.

Design/methodology/approach

The proposition is an experimental pneumatic dual-axis solar tracker using light-dependent resistor (LDR) sensors. Due to its embedded energy storage, the pneumatic tracker offers a low duty-cycle operation leading to tracking energy conservation, fewer maintenance needs and scalability potential. While MPPT assures maximum load power delivery, the solar PV's actual delivered power is calculated for the first time, accounting for the solar tracking and MPPT power costs.

Findings

The experiments' results show an increase of 37.6% in total and 35.3% in actual power production for the proposed solar tracking system compared to the fixed panel system, with an MPPT efficiency of 90%. Thus, the pneumatic tracking system offers low tracking-energy consumption and good actual power efficiency. Also, the newly proposed pneumatic stimulant can significantly simplify the tracking mechanism and benefit from several advantages that come along with it.

Originality/value

To the best of the authors’ knowledge, this work proposes, for the first time, a single-motor pneumatic dual-axis tracker with less implementation cost, less frequent operation switching and scalability potential, to be developed in future works. Also, the pneumatic proposal delivers high actual power efficiency for the first time to be addressed.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 August 2023

Raghavendra Rao N.S. and Chitra A.

The purpose of this study is to propose an extended reliability method for an industrial motor drive by integrating the physics of failure (PoF).

Abstract

Purpose

The purpose of this study is to propose an extended reliability method for an industrial motor drive by integrating the physics of failure (PoF).

Design/methodology/approach

Industrial motor drive systems (IMDS) are currently expected to perform beyond the desired operating conditions to meet the demand. The PoF of the subsystem affects its reliability under such harsh operating circumstances. It is crucial to estimate reliability by integrating PoF, which helps in understanding its impact and to develop a fault-tolerant design, particularly in such an integrated drive system. An integrated PoF extended reliability method for industrial drive system is proposed to address this issue. In research, the numerical failure rate of each component of industrial drive is obtained first with the help of the MIL-HDBK-217 military handbook. Furthermore, the mathematically deduced proposed approach is modeled in the GoldSim Monte Carlo reliability workbench.

Findings

From the results, for a 15% rise in integrated PoF, the reliability and availability of the entire IMDS dropped by 23%, resulting in an impact on mean time to failure (MTTF).

Originality/value

The integrated PoF of the motor and motor controller affects industrial drive reliability, which falls to 0.18 with the least MTTF (2.27 years); whose overall reliability of industrial drive drops to 0.06 if it is additionally integrated with communication protocol.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 22 November 2023

Weiwen Mu, Wenbai Chen, Huaidong Zhou, Naijun Liu, Haobin Shi and Jingchen Li

This paper aim to solve the problem of low assembly success rate for 3c assembly lines designed based on classical control algorithms due to inevitable random disturbances and…

Abstract

Purpose

This paper aim to solve the problem of low assembly success rate for 3c assembly lines designed based on classical control algorithms due to inevitable random disturbances and other factors,by incorporating intelligent algorithms into the assembly line, the assembly process can be extended to uncertain assembly scenarios.

Design/methodology/approach

This work proposes a reinforcement learning framework based on digital twins. First, the authors used Unity3D to build a simulation environment that matches the real scene and achieved data synchronization between the real environment and the simulation environment through the robot operating system. Then, the authors trained the reinforcement learning model in the simulation environment. Finally, by creating a digital twin environment, the authors transferred the skill learned from the simulation to the real environment and achieved stable algorithm deployment in real-world scenarios.

Findings

In this work, the authors have completed the transfer of skill-learning algorithms from virtual to real environments by establishing a digital twin environment. On the one hand, the experiment proves the progressiveness of the algorithm and the feasibility of the application of digital twins in reinforcement learning transfer. On the other hand, the experimental results also provide reference for the application of digital twins in 3C assembly scenarios.

Originality/value

In this work, the authors designed a new encoder structure in the simulation environment to encode image information, which improved the model’s perception of the environment. At the same time, the authors used the fixed strategy combined with the reinforcement learning strategy to learn skills, which improved the rate of convergence and stability of skills learning. Finally, the authors transferred the learned skills to the physical platform through digital twin technology and realized the safe operation of the flexible printed circuit assembly task.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 January 2024

Jian Kang, Libei Zhong, Bin Hao, Yuelong Su, Yitao Zhao, Xianfeng Yan and Shuanghui Hao

Most of the linear encoders are based on optics. The accuracy and reliability of these encoders are greatly reduced in polluted and noisy environments. Moreover, these encoders…

Abstract

Purpose

Most of the linear encoders are based on optics. The accuracy and reliability of these encoders are greatly reduced in polluted and noisy environments. Moreover, these encoders have a complex structure and large sensor volume and are thus not suited to small application scenarios and do not have universality. This paper aims to present a new absolute magnetic linear encoder, which has a simple structure, small size and wide application range.

Design/methodology/approach

The effect of swing error is analyzed for the sensor structural arrangement. A double-threshold interval algorithm is then proposed to synthesize multiple interval electrical angles into absolute angles and convert them into actual displacement distances.

Findings

The final linear encoder measurement range is 15.57 mm, and the resolution reaches ± 2 µm. The effectiveness of the algorithm is demonstrated experimentally.

Originality/value

The linear encoder has good robustness, and high measurement accuracy, which is suitable for industrial production. The linear encoder has been mass-produced and used in an electric power-assisted braking system.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 24 October 2023

WenFeng Qin, Yunsheng Xue, Hao Peng, Gang Li, Wang Chen, Xin Zhao, Jie Pang and Bin Zhou

The purpose of this study is to design a wearable medical device as a human care platform and to introduce the design details, key technologies and practical implementation…

Abstract

Purpose

The purpose of this study is to design a wearable medical device as a human care platform and to introduce the design details, key technologies and practical implementation methods of the system.

Design/methodology/approach

A multi-channel data acquisition scheme based on PCI-E (rapid interconnection of peripheral components) was proposed. The flexible biosensor is integrated with the flexible data acquisition card with monitoring capability, and the embedded (device that can operate independently) chip STM32F103VET6 is used to realize the simultaneous processing of multi-channel human health parameters. The human health parameters were transferred to the upper computer LabVIEW by intelligent clothing through USB or wireless Bluetooth to complete the transmission and processing of clinical data, which facilitates the analysis of medical data.

Findings

The smart clothing provides a mobile medical cloud platform for wearable medical through cloud computing, which can continuously monitor the body's wrist movement, body temperature and perspiration for 24 h. The result shows that each channel is completely accurate to the top computer display, which can meet the expected requirements, and the wearable instant care system can be applied to healthcare.

Originality/value

The smart clothing in this study is based on the monitoring and diagnosis of textiles, and the electronic communication devices can cooperate and interact to form a wearable textile system that provides medical monitoring and prevention services to individuals in the fastest and most accurate way. Each channel of the system is precisely matched to the display screen of the host computer and meets the expected requirements. As a real-time human health protection platform technology, continuous monitoring of human vital signs can complete the application of human motion detection, medical health monitoring and human–computer interaction. Ultimately, such an intelligent garment will become an integral part of our everyday clothing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 38