Search results

1 – 10 of 274
Open Access
Article
Publication date: 22 April 2024

Sami Barmada, Nunzia Fontana, Leonardo Sandrolini and Mattia Simonazzi

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to…

42

Abstract

Purpose

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to an ad-hoc design for specific applications.

Design/methodology/approach

The methodology used is both theoretical and numerical; it is based on circuit theory and on an optimization procedure.

Findings

The results show that when the knowledge of the current in each unit cell of a metasurface is needed, the most common approximations currently used are often not accurate. Furthermore, a procedure for the termination of a metasurface, with application-driven goals, is given.

Originality/value

This paper investigates the distribution of the currents in a 2D metamaterial realized with magnetically coupled resonant coils. Different models for the analysis of these structures are illustrated, and the effects of the approximations they introduce on the current values are shown and discussed. Furthermore, proper terminations of the resonators on the boundaries have been investigated by implementing a numerical optimization procedure with the purpose of achieving a uniform distribution of the resonator currents. The results show that the behavior of a metasurface (in terms of currents in each single resonator) depends on different properties; as a consequence, their design is not a trivial task and is dependent on the specific applications they are designed for. A design strategy, with lumped impedance termination, is here proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 1 May 1998

Keith Pitt

52

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 1 September 1998

Keith Pitt

53

Abstract

Details

Circuit World, vol. 24 no. 3
Type: Research Article
ISSN: 0305-6120

Open Access
Article
Publication date: 28 August 2021

Slawomir Koziel and Anna Pietrenko-Dabrowska

A novel framework for expedited antenna optimization with an iterative prediction-correction scheme is proposed. The methodology is comprehensively validated using three…

Abstract

Purpose

A novel framework for expedited antenna optimization with an iterative prediction-correction scheme is proposed. The methodology is comprehensively validated using three real-world antenna structures: narrow-band, dual-band and wideband, optimized under various design scenarios.

Design/methodology/approach

The keystone of the proposed approach is to reuse designs pre-optimized for various sets of performance specifications and to encode them into metamodels that render good initial designs, as well as an initial estimate of the antenna response sensitivities. Subsequent design refinement is realized using an iterative prediction-correction loop accommodating the discrepancies between the actual and target design specifications.

Findings

The presented framework is capable of yielding optimized antenna designs at the cost of just a few full-wave electromagnetic simulations. The practical importance of the iterative correction procedure has been corroborated by benchmarking against gradient-only refinement. It has been found that the incorporation of problem-specific knowledge into the optimization framework greatly facilitates parameter adjustment and improves its reliability.

Research limitations/implications

The proposed approach can be a viable tool for antenna optimization whenever a certain number of previously obtained designs are available or the designer finds the initial effort of their gathering justifiable by intended re-use of the procedure. The future work will incorporate response features technology for improving the accuracy of the initial approximation of antenna response sensitivities.

Originality/value

The proposed optimization framework has been proved to be a viable tool for cost-efficient and reliable antenna optimization. To the knowledge, this approach to antenna optimization goes beyond the capabilities of available methods, especially in terms of efficient utilization of the existing knowledge, thus enabling reliable parameter tuning over broad ranges of both operating conditions and material parameters of the structure of interest.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Article
Publication date: 28 September 2010

55

Abstract

Details

Assembly Automation, vol. 30 no. 4
Type: Research Article
ISSN: 0144-5154

Content available
Article
Publication date: 31 July 2009

J. Buckley, B. O'Flynn, J. Barton and S.C. O'Mathuna

The purpose of this paper is to develop a highly miniaturized wireless inertial sensor system based on a novel 3D packaging technique using a flexible printed circuit (FPC). The…

5152

Abstract

Purpose

The purpose of this paper is to develop a highly miniaturized wireless inertial sensor system based on a novel 3D packaging technique using a flexible printed circuit (FPC). The device is very suitable for wearable applications in which small size and lightweight are required such as body area network, medical, sports and entertainment applications.

Design/methodology/approach

Modern wireless inertial measurement units are typically implemented on a rigid 2D printed circuit board (PCB). The design concept presented here is based around the use of a novel planar, six‐faceted, crucifix or cross‐shaped FPC instead of a rigid PCB. A number of specific functional blocks (such as microelectromechanical systems gyroscope and accelerometer sensors, microcontroller (MCU), radio transceiver, antenna, etc.) are first assigned to each of the six faces which are each 1 cm2 in area. The FPC cross is then developed into a 1 cm3, 3D configuration by folding the cross at each of five bend planes. The result is a low‐volume and lightweight, 1 cm3 wireless inertial sensor that can sense and send motion sensed data wirelessly to a base station. The wireless sensor device has been designed for low power operation both at the hardware and software levels. At the base station side, a radio receiver is connected to another MCU unit, which sends received data to a personal computer (PC) and graphical user interface. The industrial, scientific and medical band (2.45 GHz) is used to achieve half duplex communication between the two sides.

Findings

A complete wireless sensor system has been realized in a 3D cube form factor using an FPC. The packaging technique employed during the work is shown to be efficient in fabricating the final cubic system and resulted in a significant saving in the final size and weight of the system. A number of design issues are identified regarding the use of FPC for implementing the 3D structure and the chosen solutions are shown to be successful in dealing with these issues.

Research limitations/implications

Currently, a limitation of the system is the need for an external battery to power the sensor system. A second phase of development would be required to investigate the possibility of the integration of a battery and charging system within the cube structure. In addition, the use of flexible substrate imposes a number of restrictions in terms of the ease of manufacturability of the final system due to the requirement of the required folding step.

Practical implications

The small size and weight of the developed system is found to be extremely useful in different deployments. It would be useful to further explore the system performance in different application scenarios such as wearable motion tracking applications. In terms of manufacturability, component placement needs to be carefully considered, ensuring that there is sufficient distance between the components, bend planes and board edges and this leads to a slightly reduced usable area on the printed circuit.

Originality/value

This paper provides a novel and useful method for realizing a wireless inertial sensor system in a 3D package. The value of the chosen approach is that a significant reduction in the required system volume is achieved. In particular, a 78.5 per cent saving in volume is obtained in decreasing the module size from a 25 to a 15 mm3 size.

Details

Microelectronics International, vol. 26 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Content available
Article
Publication date: 18 May 2012

211

Abstract

Details

Pigment & Resin Technology, vol. 41 no. 3
Type: Research Article
ISSN: 0369-9420

Content available
Article
Publication date: 16 November 2010

Patrick Dular and Maurizio Repetto

339

Abstract

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 6
Type: Research Article
ISSN: 0332-1649

Content available
Article
Publication date: 4 January 2008

Patrick Dular, Grard Meunier and Francis Piriou

454

Abstract

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 1
Type: Research Article
ISSN: 0332-1649

Open Access
Article
Publication date: 14 December 2021

Łukasz Knypiński and Frédéric Gillon

The purpose of this paper is to develop an algorithm and software for determining the size of a line-start permanent magnet synchronous motor (LSPMSMs) based on its optimization.

Abstract

Purpose

The purpose of this paper is to develop an algorithm and software for determining the size of a line-start permanent magnet synchronous motor (LSPMSMs) based on its optimization.

Design/methodology/approach

The software consists of an optimization procedure that cooperates with a FEM model to provide the desired behavior of the motor under consideration. The proposed improved version of the genetic algorithm has modifications enabling efficient optimization of LSPMSMs. The objective function consists of three important functional parameters describing the designed machine. The 2-D field-circuit mathematical model of the dynamics operation of the LSPMSMs consists of transient electromagnetic field equations, equations describing electric windings and mechanical motion equations. The model has been developed in the ANSYS Maxwell environment.

Findings

In this proposed approach, the set of design variables contains the variables describing the stator and rotor structure. The improved procedure of the optimization algorithm makes it possible to find an optimal motor structure with correct synchronization properties. The proposed modifications make the optimization procedure faster and more

Originality/value

This proposed approach can be successfully applied to solve the design problems of LSPMSMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 274