Search results
1 – 10 of 686Gohar F. Khan, Marko Sarstedt, Wen-Lung Shiau, Joseph F. Hair, Christian M. Ringle and Martin P. Fritze
The purpose of this paper is to explore the knowledge infrastructure of methodological research on partial least squares structural equation modeling (PLS-SEM) from a network…
Abstract
Purpose
The purpose of this paper is to explore the knowledge infrastructure of methodological research on partial least squares structural equation modeling (PLS-SEM) from a network point of view. The analysis involves the structures of authors, institutions, countries and co-citation networks, and discloses trending developments in the field.
Design/methodology/approach
Based on bibliometric data downloaded from the Web of Science, the authors apply various social network analysis (SNA) and visualization tools to examine the structure of knowledge networks of the PLS-SEM domain. Specifically, the authors investigate the PLS-SEM knowledge network by analyzing 84 methodological studies published in 39 journals by 145 authors from 106 institutions.
Findings
The analysis reveals that specific authors dominate the network, whereas most authors work in isolated groups, loosely connected to the network’s focal authors. Besides presenting the results of a country level analysis, the research also identifies journals that play a key role in disseminating knowledge in the network. Finally, a burst detection analysis indicates that method comparisons and extensions, for example, to estimate common factor model data or to leverage PLS-SEM’s predictive capabilities, feature prominently in recent research.
Originality/value
Addressing the limitations of prior systematic literature reviews on the PLS-SEM method, this is the first study to apply SNA to reveal the interrelated structures and properties of PLS-SEM’s research domain.
Details
Keywords
Pratyush N. Sharma, Benjamin D. Liengaard, Joseph F. Hair, Marko Sarstedt and Christian M. Ringle
Researchers often stress the predictive goals of their partial least squares structural equation modeling (PLS-SEM) analyses. However, the method has long lacked a statistical…
Abstract
Purpose
Researchers often stress the predictive goals of their partial least squares structural equation modeling (PLS-SEM) analyses. However, the method has long lacked a statistical test to compare different models in terms of their predictive accuracy and to establish whether a proposed model offers a significantly better out-of-sample predictive accuracy than a naïve benchmark. This paper aims to address this methodological research gap in predictive model assessment and selection in composite-based modeling.
Design/methodology/approach
Recent research has proposed the cross-validated predictive ability test (CVPAT) to compare theoretically established models. This paper proposes several extensions that broaden the scope of CVPAT and explains the key choices researchers must make when using them. A popular marketing model is used to illustrate the CVPAT extensions’ use and to make recommendations for the interpretation and benchmarking of the results.
Findings
This research asserts that prediction-oriented model assessments and comparisons are essential for theory development and validation. It recommends that researchers routinely consider the application of CVPAT and its extensions when analyzing their theoretical models.
Research limitations/implications
The findings offer several avenues for future research to extend and strengthen prediction-oriented model assessment and comparison in PLS-SEM.
Practical implications
Guidelines are provided for applying CVPAT extensions and reporting the results to help researchers substantiate their models’ predictive capabilities.
Originality/value
This research contributes to strengthening the predictive model validation practice in PLS-SEM, which is essential to derive managerial implications that are typically predictive in nature.
Details
Keywords
Joe F. Hair, Marko Sarstedt, Christian M. Ringle, Pratyush N. Sharma and Benjamin Dybro Liengaard
This paper aims to discuss recent criticism related to partial least squares structural equation modeling (PLS-SEM).
Abstract
Purpose
This paper aims to discuss recent criticism related to partial least squares structural equation modeling (PLS-SEM).
Design/methodology/approach
Using a combination of literature reviews, empirical examples, and simulation evidence, this research demonstrates that critical accounts of PLS-SEM paint an overly negative picture of PLS-SEM’s capabilities.
Findings
Criticisms of PLS-SEM often generalize from boundary conditions with little practical relevance to the method’s general performance, and disregard the metrics and analyses (e.g., Type I error assessment) that are important when assessing the method’s efficacy.
Research limitations/implications
We believe the alleged “fallacies” and “untold facts” have already been addressed in prior research and that the discussion should shift toward constructive avenues by exploring future research areas that are relevant to PLS-SEM applications.
Practical implications
All statistical methods, including PLS-SEM, have strengths and weaknesses. Researchers need to consider established guidelines and recent advancements when using the method, especially given the fast pace of developments in the field.
Originality/value
This research addresses criticisms of PLS-SEM and offers researchers, reviewers, and journal editors a more constructive view of its capabilities.
Details
Keywords
Jan-Michael Becker, Jun-Hwa Cheah, Rasoul Gholamzade, Christian M. Ringle and Marko Sarstedt
Partial least squares structural equation modeling (PLS-SEM) has attracted much attention from both methodological and applied researchers in various disciplines – also in…
Abstract
Purpose
Partial least squares structural equation modeling (PLS-SEM) has attracted much attention from both methodological and applied researchers in various disciplines – also in hospitality management research. As PLS-SEM is relatively new compared to other multivariate analysis techniques, there are still numerous open questions and uncertainties in its application. This study aims to address this important issue by offering guidance regarding its use in contexts with which researchers struggle.
Design/methodology/approach
The authors examine the most prominent questions and answers posed in a well-known PLS-SEM discussion forum. The authors do so by using a text analysis technique to identify the most salient topics.
Findings
The data analysis identifies three salient PLS-SEM topics (i.e. bootstrapping and significance testing, higher-order constructs and moderation).
Research limitations/implications
The results allow us to address the PLS-SEM community’s main methodological issues. The authors discuss each area separately and provide explanations and guidelines.
Practical implications
The guidelines on the most important PLS-SEM topics provide decision-making and application aids. In this way, the authors make a decisive contribution to clarifying ambiguities when applying the PLS-SEM method in hospitality management research and other disciplines.
Originality/value
There has as yet been no systematic analysis of this kind in the field of PLS-SEM; the authors, therefore, present the first research results. The findings and recommendations provide guidance for PLS-SEM applications in hospitality research and practice.
Details
Keywords
Christian M. Ringle and Marko Sarstedt
The purpose of this paper is to introduce the importance-performance map analysis (IPMA) and explain how to use it in the context of partial least squares structural equation…
Abstract
Purpose
The purpose of this paper is to introduce the importance-performance map analysis (IPMA) and explain how to use it in the context of partial least squares structural equation modeling (PLS-SEM). A case study, drawing on the IPMA module implemented in the SmartPLS 3 software, illustrates the results generation and interpretation.
Design/methodology/approach
The explications first address the principles of the IPMA and introduce a systematic procedure for its use, followed by a detailed discussion of each step. Finally, a case study on the use of technology shows how to apply the IPMA in empirical PLS-SEM studies.
Findings
The IPMA gives researchers the opportunity to enrich their PLS-SEM analysis and, thereby, gain additional results and findings. More specifically, instead of only analyzing the path coefficients (i.e. the importance dimension), the IPMA also considers the average value of the latent variables and their indicators (i.e. performance dimension).
Research limitations/implications
An IPMA is tied to certain requirements, which relate to the measurement scales, variable coding, and indicator weights estimates. Moreover, the IPMA presumes linear relationships. This research does not address the computation and interpretation of non-linear dependencies.
Practical implications
The IPMA is particularly useful for generating additional findings and conclusions by combining the analysis of the importance and performance dimensions in practical PLS-SEM applications. Thereby, the IPMA allows for prioritizing constructs to improve a certain target construct. Expanding the analysis to the indicator level facilitates identifying the most important areas of specific actions. These results are, for example, particularly important in practical studies identifying the differing impacts that certain construct dimensions have on phenomena such as technology acceptance, corporate reputation, or customer satisfaction.
Originality/value
This paper is the first to offer researchers a tutorial and annotated example of an IPMA. Based on a state-of-the-art review of the technique and a detailed explanation of the method, this paper introduces a systematic procedure for running an IPMA. A case study illustrates the analysis, using the SmartPLS 3 software.
Details
Keywords
Ricardo Vinícius Dias Jordão, Muhammad Mustafa Raziq, Mumtaz Ali Memon, Hiram Ting, Christian M. Ringle and Nuttawuth Muenjohn
Joseph F. Hair, Jeffrey J. Risher, Marko Sarstedt and Christian M. Ringle
The purpose of this paper is to provide a comprehensive, yet concise, overview of the considerations and metrics required for partial least squares structural equation modeling…
Abstract
Purpose
The purpose of this paper is to provide a comprehensive, yet concise, overview of the considerations and metrics required for partial least squares structural equation modeling (PLS-SEM) analysis and result reporting. Preliminary considerations are summarized first, including reasons for choosing PLS-SEM, recommended sample size in selected contexts, distributional assumptions, use of secondary data, statistical power and the need for goodness-of-fit testing. Next, the metrics as well as the rules of thumb that should be applied to assess the PLS-SEM results are covered. Besides presenting established PLS-SEM evaluation criteria, the overview includes the following new guidelines: PLSpredict (i.e., a novel approach for assessing a model’s out-of-sample prediction), metrics for model comparisons, and several complementary methods for checking the results’ robustness.
Design/methodology/approach
This paper provides an overview of previously and recently proposed metrics as well as rules of thumb for evaluating the research results based on the application of PLS-SEM.
Findings
Most of the previously applied metrics for evaluating PLS-SEM results are still relevant. Nevertheless, scholars need to be knowledgeable about recently proposed metrics (e.g. model comparison criteria) and methods (e.g. endogeneity assessment, latent class analysis and PLSpredict), and when and how to apply them to extend their analyses.
Research limitations/implications
Methodological developments associated with PLS-SEM are rapidly emerging. The metrics reported in this paper are useful for current applications, but must always be up to date with the latest developments in the PLS-SEM method.
Originality/value
In light of more recent research and methodological developments in the PLS-SEM domain, guidelines for the method’s use need to be continuously extended and updated. This paper is the most current and comprehensive summary of the PLS-SEM method and the metrics applied to assess its solutions.
Details
Keywords
Walid Chaouali, Nizar Souiden and Christian M. Ringle
Considering the scant scholarly research on elderly customers’ behaviors, this study aims to investigate elderly customers’ reactions to service failure. Additionally, it takes…
Abstract
Purpose
Considering the scant scholarly research on elderly customers’ behaviors, this study aims to investigate elderly customers’ reactions to service failure. Additionally, it takes into account customers’ emotions and abilities to cope with stressful situations and achieve successful problem-solving complaining. In particular, future time perspective, wisdom and emotional intelligence were examined to delineate their impacts on the elderly’s responses to service failures.
Design/methodology/approach
Data were collected in a French city through mall-intercept interviewing. In total, 240 respondents participated, based on their retrospective service failure experience. PLS-SEM was used to analyze the data.
Findings
Both wisdom and emotional intelligence were found to directly and positively impact problem-solving complaining. Future time perspective, however, only had an indirect effect on problem-solving complaining through wisdom and emotional intelligence.
Originality/value
To the best of the authors’ knowledge, this is the first study to shed some light on how elderly customers constructively react to service failures. To this end, it uses future time perspective, wisdom and emotional intelligence, as well as their interrelationships, to explain elderly customers’ problem-solving complaining.
Details
Keywords
Joseph F. Hair, Pratyush N. Sharma, Marko Sarstedt, Christian M. Ringle and Benjamin D. Liengaard
The purpose of this paper is to assess the appropriateness of equal weights estimation (sumscores) and the application of the composite equivalence index (CEI) vis-à-vis…
Abstract
Purpose
The purpose of this paper is to assess the appropriateness of equal weights estimation (sumscores) and the application of the composite equivalence index (CEI) vis-à-vis differentiated indicator weights produced by partial least squares structural equation modeling (PLS-SEM).
Design/methodology/approach
The authors rely on prior literature as well as empirical illustrations and a simulation study to assess the efficacy of equal weights estimation and the CEI.
Findings
The results show that the CEI lacks discriminatory power, and its use can lead to major differences in structural model estimates, conceals measurement model issues and almost always leads to inferior out-of-sample predictive accuracy compared to differentiated weights produced by PLS-SEM.
Research limitations/implications
In light of its manifold conceptual and empirical limitations, the authors advise against the use of the CEI. Its adoption and the routine use of equal weights estimation could adversely affect the validity of measurement and structural model results and understate structural model predictive accuracy. Although this study shows that the CEI is an unsuitable metric to decide between equal weights and differentiated weights, it does not propose another means for such a comparison.
Practical implications
The results suggest that researchers and practitioners should prefer differentiated indicator weights such as those produced by PLS-SEM over equal weights.
Originality/value
To the best of the authors’ knowledge, this study is the first to provide a comprehensive assessment of the CEI’s usefulness. The results provide guidance for researchers considering using equal indicator weights instead of PLS-SEM-based weighted indicators.
Details