Search results

1 – 9 of 9
Article
Publication date: 13 October 2022

Eman Salim, Wael S. Mohamed and Rasha Sadek

Paper aims to evaluate the efficiency of traditional chitosan, nano chitosan, and chitosan nanocomposites for consolidating aged papyrus samples. Cellulose-based materials, such…

Abstract

Purpose

Paper aims to evaluate the efficiency of traditional chitosan, nano chitosan, and chitosan nanocomposites for consolidating aged papyrus samples. Cellulose-based materials, such as papyrus sheets and paper, which are the most common types of writing supports for works of art in many museums and archive. They are subjected to different types of deterioration factors that may lead to many conservation problems. Consolidation treatment is one of the most common conservation treatments, which should have perform after much testing to select the appropriate consolidants.

Design/methodology/approach

This research paper aims to evaluate the resistance of traditional chitosan, nanochitosan and chitosan/zinc oxide nanocomposite as an eco-friendly papyrus strengthening. Untreated and treated papyrus was thermally aged and characterized via scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the papyrus specimens was also determined against four tested pathogenic bacteria by disc diffusion method: MRSA, Staphylococcus aureus, E. coli and P. aeruginosa.

Findings

The results revealed that chitosan nanocomposite showed a remarkable enhancement of papyrus tensile properties and presence of ZnO prevents the effects of biodeterioration.

Originality/value

Zinc oxide nanoparticles enhance the optical properties and increase the chemical reactions between the consolidating material and the treated papyrus.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 March 2024

Mostafa Abdel-Hamied, Ahmed A.M. Abdelhafez and Gomaa Abdel-Maksoud

This study aims to focus on the main materials used in consolidation processes of illuminated paper manuscripts and leather binding.

Abstract

Purpose

This study aims to focus on the main materials used in consolidation processes of illuminated paper manuscripts and leather binding.

Design/methodology/approach

For each material, chemical structure, chemical composition, molecular formula, solubility, advantages, disadvantages and its role in treatment process are presented.

Findings

This study concluded that carboxy methyl cellulose, hydroxy propyl cellulose, methyl cellulose, cellulose acetate, nanocrystalline cellulose, funori, sturgeon glue, poly vinyl alcohol, chitosan, chitosan nanoparticles (NPs), gelatin, aquazol, paraloid B72 and hydroxyapatite NPs were the most common and important materials used for the consolidation of illuminated paper manuscripts. For the leather bindings, hydroxy propyl cellulose, polyethylene glycol, oligomeric melamine-formaldehyde resin, acrylic wax SC6000, pliantex, paraloid B67 and B72, silicone oil and collagen NPs are the most consolidants used.

Originality/value

Illuminated paper manuscripts with leather binding are considered one of the most important objects in libraries, museums and storehouses. The uncontrolled conditions and other deterioration factors inside the libraries and storehouses lead to degradation of these artifacts. The brittleness, fragility and weakness are considered the most common deterioration aspects of illuminated paper manuscripts and leather binding. Therefore, the consolidation process became vital and important to solve this problem. This study presents the main materials used for consolidation process of illuminated paper manuscripts and leather bindings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 28 March 2024

Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Shahid Adeel and Alireza Mahmoudi Nahavandi

Agricultural waste and food sources are some of the pollutants of the environment. One of these wastes is the peel of fruits that cannot be consumed as food. In this regard…

Abstract

Purpose

Agricultural waste and food sources are some of the pollutants of the environment. One of these wastes is the peel of fruits that cannot be consumed as food. In this regard, walnut husk (WH) and oleaster peel (PO) are known as two important sources of tannin and are bulky wastes. Because of the high percentage of tannin, these materials can be used as a natural source for the preparation of bio-mordant in the dyeing process.

Design/methodology/approach

In this study, Reseda and Madder were used as natural dyes in the presence of a mixture of two bio-mordants. WH and PO were selected as bio-mordant. All natural resources are extracted to obtain the juice. The phenolic percentage of tannin-containing extracts was evaluated and then it was used for wool yarns by premordanting method. The results of evaluating the fastness properties using the ISO method.

Findings

The most important achievement of this research is the use of agricultural waste in the dyeing process to reduce environmental pollution and create added value. All compounds rich in tannin have some phenolic components, therefore the amount of phenolic content of these extracts was evaluated. The effect of mixing the mordant on the color characteristics of the yarns was investigated and the results showed that changing the ratio of the combination of two mordant is effective on the K/S values. The results of evaluating the fastness properties using the ISO method showed that the washing, rubbing and light fastness in the presence of mordant is good, good and moderate, respectively.

Originality/value

In this paper, to the best of the authors’ knowledge, for the first time, the combination of two natural extracts obtained from agricultural waste has been used to create a new bio-mordant on fibers and improve stability.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 10 November 2022

Md. Raijul Islam, Ayub Nabi Nabi Khan, Rois Uddin Mahmud, Shahin Mohammad Nasimul Haque and Md. Mohibul Islam Khan

This paper aims to evaluate the effects of banana (Musa) peel and guava (Psidium guajava) leaves extract as mordants on jute–cotton union fabrics dyed with onion skin extract as a…

Abstract

Purpose

This paper aims to evaluate the effects of banana (Musa) peel and guava (Psidium guajava) leaves extract as mordants on jute–cotton union fabrics dyed with onion skin extract as a natural dye.

Design/methodology/approach

The dye was extracted from the outer skin of onions by boiling in water and later concentrated. The bio-mordants were prepared by maceration using methanol and ethanol. The fabrics were pre-mordanted, simultaneously mordanted and post-mordanted with various concentrations according to the weight of the fabric. The dyed and mordanted fabrics were later subjected to measurement of color coordinates, color strength and colorfastness to the washing test. Furthermore, the dyed samples were characterized by Fourier transform infrared, and different chemical bonds were analyzed by X-ray photoelectron spectroscopy analysis.

Findings

Significant improvement was obtained in colorfastness and color strength values in various instances using banana peel and guava leaves as bio mordants. Post-mordanted with banana peel provided the best results for wash fastness. Better color strength was achieved by fabric post-mordanted with guava leave extracts.

Originality/value

Sustainable dyeing methods of natural dyes using banana peel and guava leaves as bio mordants were explored on jute–cotton union fabrics. Improvement in colorfastness and color strength for various instances was observed. Thus, this paper provides a promising alternative to metallic salt mordants.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 March 2024

Abhishek Kumar and Manpreet Manshahia

The aim of this study is to present an overview of sustainable practices in the development of waterproof breathable fabrics for garments. It aims to provide insights into the…

Abstract

Purpose

The aim of this study is to present an overview of sustainable practices in the development of waterproof breathable fabrics for garments. It aims to provide insights into the current state of academic research in this domain and identify and analyze major sustainable trends in the field.

Design/methodology/approach

This study conducts a thorough examination of research publications sourced from the Scopus database spanning the years 2013–2023 by employing a systematic approach. The research utilizes both descriptive analysis and content analysis to identify trends, notable journals and leading countries in sustainable waterproof breathable fabric development.

Findings

The study reveals a notable increase in studies focusing on sustainable approaches in the development of waterproof breathable fabrics for garments. Descriptive analysis highlights the most prominent journal and leading country in terms of research volume. Content analysis identifies four key trends: minimizing chemical usage, developing easily degradable materials, creating fabrics promoting health and well-being and initiatives to reduce energy consumption.

Research limitations/implications

The main limitation of this research lies in its exclusive reliance on the Scopus database.

Practical implications

The insights derived from this study offer practical guidance for prospective researchers interested in investigating sustainable approaches to developing waterproof breathable fabric for garments. The identified trends provide a foundation for aligning research endeavors with contemporary global perspectives, facilitating the integration of sustainable methodologies into the garment industry.

Originality/value

This systematic literature review contributes original insights by synthesizing current research trends and outlining evolving sustainable practices in the development of waterproof breathable fabrics. The identification of key focus areas adds a novel perspective to existing knowledge.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 March 2024

Sajad Pirsa and Fahime Purghorbani

In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to…

Abstract

Purpose

In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to quickly and sensitively determine H2O2 concentration based on different analytical principles. In this study, the importance of H2O2, its applications in various industries, especially the food industry, and the importance of measuring it with different techniques, especially portable sensors and on-site analysis, have been investigated and studied.

Design/methodology/approach

Hydrogen peroxide (H2O2) is a very simple molecule in nature, but due to its strong oxidizing and reducing properties, it has been widely used in the pharmaceutical, medical, environmental, mining, textile, paper, food production and chemical industries. Sensitive, rapid and continuous detection of H2O2 is of great importance in many systems for product quality control, health care, medical diagnostics, food safety and environmental protection.

Findings

Various methods have been developed and applied for the analysis of H2O2, such as fluorescence, colorimetry and electrochemistry, among them, the electrochemical technique due to its advantages in simple instrumentation, easy miniaturization, sensitivity and selectivity.

Originality/value

Monitoring the H2O2 concentration level is of practical importance for academic and industrial purposes. Edible oils are prone to oxidation during processing and storage, which may adversely affect oil quality and human health. Determination of peroxide value (PV) of edible oils is essential because PV is one of the most common quality parameters for monitoring lipid oxidation and oil quality control. The development of cheap, simple, fast, sensitive and selective H2O2 sensors is essential.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 September 2022

Gomaa Abdel-Maksoud, Aya Abdallah, Rana Youssef, Doha Elsayed, Nesreen Labib, Wael S. Mohamed and Medhat Ibrahim

This study aims to evaluate the efficiency of using some polymers at different concentrations in the consolidation of vegetable-tanned leather artifacts.

Abstract

Purpose

This study aims to evaluate the efficiency of using some polymers at different concentrations in the consolidation of vegetable-tanned leather artifacts.

Design/methodology/approach

New vegetable-tanned leather samples were prepared. The consolidants used were polyacrylamide (PAM) and polymethyl methacrylate/hydroxyethyl methacrylate (MMA-HEMA). Accelerated heat aging was applied to the untreated and treated samples. Analytical techniques used were Fourier transform infrared spectroscopy (FTIR), digital microscope, scanning electron microscope (SEM), change of color and mechanical properties.

Findings

The characteristic FTIR bands showed the effect of accelerated heat aging on the molecular structure of the studied samples, but treated and aged treated samples used were better than aged untreated samples. Microscopic investigations (digital and SEM), and mechanical properties proved that 2% was the best concentration for polymers used. The change in the total color difference of the treated and aged treated samples was limited.

Originality/value

This study presents the important results obtained from PAM and poly(MMA-HEMA) used for the consolidation of vegetable-tanned leather artifacts. The best results of the studied polymers can be applied directly to protect historical vegetable-tanned leathers.

Article
Publication date: 28 March 2024

Monica Puri Sikka, Jameer Aslam Bargir and Samridhi Garg

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in…

Abstract

Purpose

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in patients with burns and wounds and the difficulty of treating infections and antimicrobial resistance. Woven, nonwoven and knitted materials are used to make dressings; however, nonwoven dressings are becoming more popular because of their softness and high absorption capacity. Additionally, textiles have excellent geometrical, physical and mechanical features including three-dimensional structure availability, air, vapor and liquid permeability, strength, extensibility, flexibility and diversity of fiber length, fineness and cross-sectional shapes. It is necessary to treat every burn according to international protocol and along with it has to focus on particular problems of patients and the best possible results.

Design/methodology/approach

The objective of this paper is to conduct a thorough examination of research pertaining to the utilization of textiles, as well as alternative materials and innovative techniques, in the context of burn wound dressings. Through a critical analysis of the findings, this study intends to provide valuable insights that can inform and guide future research endeavors in this field.

Findings

In the past years, there have been several dressings such as xeroform petrolatum gauze, silver-impregnated dressings, biological dressings, hydrocolloid dressings, polyurethane film dressings, silicon-coated nylon dressings, dressings for biosynthetic skin substitutes, hydrogel dressings, newly developed dressings, scaffold bandages, Sorbalgon wound dressing, negative pressure therapy, enzymatic debridement and high-pressure water irrigation developed for the fast healing of burn wounds.

Originality/value

This research conducts a thorough analysis of the role of textiles in modern burn wound dressings.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 21 April 2023

Rana I. Mahmood, Harraa S. Mohammed-Salih, Ata’a Ghazi, Hikmat J. Abdulbaqi and Jameel R. Al-Obaidi

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their…

Abstract

Purpose

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their intriguing characteristics. Its synthesis employing green chemistry principles has become a key source for next-generation antibiotics attributed to its features such as environmental friendliness, ease of use and affordability. Because they are more environmentally benign, plants have been employed to create metallic NPs. These plant extracts serve as capping, stabilising or hydrolytic agents and enable a regulated synthesis as well.

Design/methodology/approach

Organic chemical solvents are harmful and entail intense conditions during nanoparticle synthesis. The copper oxide NPs (CuO-NPs) synthesised by employing the green chemistry principle showed potential antitumor properties. Green synthesised CuO-NPs are regarded to be a strong contender for applications in the pharmacological, biomedical and environmental fields.

Findings

The aim of this study is to evaluate the anticancer potential of CuO-NPs plant extracts to isolate and characterise the active anticancer principles as well as to yield more effective, affordable, and safer cancer therapies.

Originality/value

This review article highlights the copper oxide nanoparticle's biomedical applications such as anticancer, antimicrobial, dental and drug delivery properties, future research perspectives and direction are also discussed.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

1 – 9 of 9