Search results

1 – 10 of 279
Article
Publication date: 12 April 2024

Xiaodong Yu, Guangqiang Shi, Hui Jiang, Ruichun Dai, Wentao Jia, Xinyi Yang and Weicheng Gao

This paper aims to study the influence of cylindrical texture parameters on the lubrication performance of static and dynamic pressure thrust bearings (hereinafter referred to as…

Abstract

Purpose

This paper aims to study the influence of cylindrical texture parameters on the lubrication performance of static and dynamic pressure thrust bearings (hereinafter referred to as thrust bearings) and to optimize their lubrication performance using multiobjective optimization.

Design/methodology/approach

The influence of texture parameters on the lubrication performance of thrust bearings was studied based on the modified Reynolds equation. The objective functions are predicted through the BP neural network, and the texture parameters were optimized using the improved multiobjective ant lion algorithm (MOALA).

Findings

Compared with smooth surface, the introduction of texture can improve the lubrication properties. Under the optimization of the improved algorithm, when the texture diameter, depth, spacing and number are approximately 0.2 mm, 0.5 mm, 5 mm and 34, respectively, the loading capacity is increased by around 27.7% and the temperature is reduced by around 1.55°C.

Originality/value

This paper studies the effect of texture parameters on the lubrication properties of thrust bearings based on the modified Reynolds equation and performs multiobjective optimization through an improved MOALA.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2024

Jun Cheng and Chunxing Gu

As the crucial support component of the propeller power system, the reliability of the operation of submersible pumps is influenced by the lubrication performance of…

Abstract

Purpose

As the crucial support component of the propeller power system, the reliability of the operation of submersible pumps is influenced by the lubrication performance of water-lubricated thrust bearings. When the water-lubricated thrust bearings are under start-stop or heavy load conditions, the effect of surface morphology is crucial as the mixed lubrication regime is encountered. This paper aims to develop one mixed lubrication model for the water-lubricated thrust bearings to predict the effects of surface skewness, kurtosis and roughness orientation on the loading carrying capacity and tribological behavior.

Design/methodology/approach

This paper developed one improved mixed lubrication model specifically for the water-lubricated thrust bearing system. In this model, the hydrodynamic model was improved by using the height of the rough surface and its probability density function, combined with the average flow model. The asperity contact model was improved by using the equation for the Pearson system of frequency curves to characterize the non-Gaussian aspect of surface roughness distribution.

Findings

According to the results, negative skewness, large kurtosis and lateral surface pattern can improve the tribological performance of water-lubricated thrust bearings. Optimizing the surface morphology is a reasonable design method that can improve the performance of water-lubricated thrust bearings.

Originality/value

In this paper, one mixed lubrication model specifically for the water-lubricated thrust bearing with the effect of surface roughness into consideration was developed. Based on the developed model, the effect of surface morphology on tribological behavior can be evaluated.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0247/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 19 March 2024

Feng Chen, Zhongjin Wang, Dong Zhang and Shuai Zeng

Explore the development trend of chemically-improved soil in railway engineering.

Abstract

Purpose

Explore the development trend of chemically-improved soil in railway engineering.

Design/methodology/approach

In this paper, the technical standards home and abroad were analyzed. Laboratory test, field test and monitoring were carried out.

Findings

The performance design system of the chemically-improved soil should be established.

Originality/value

On the basis of the performance design, the test methods and standards for various properties of chemically-improved soil should be established to evaluate the improvement effect and control the engineering quality.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 13 December 2022

Zhenhua Luo, Juntao Guo, Jianqiang Han and Yuhong Wang

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in…

Abstract

Purpose

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in China is in the initial stage of development, which is prone to construction safety issues. This study aims to evaluate the construction safety risks of prefabricated subway stations in China and formulate corresponding countermeasures to ensure construction safety.

Design/methodology/approach

A construction safety risk evaluation index system for the prefabricated subway station was established through literature research and the Delphi method. Furthermore, based on the structure entropy weight method, matter-element theory and evidence theory, a hybrid evaluation model is developed to evaluate the construction safety risks of prefabricated subway stations. The basic probability assignment (BPA) function is obtained using the matter-element theory, the index weight is calculated using the structure entropy weight method to modify the BPA function and the risk evaluation level is determined using the evidence theory. Finally, the reliability and applicability of the evaluation model are verified with a case study of a prefabricated subway station project in China.

Findings

The results indicate that the level of construction safety risks in the prefabricated subway station project is relatively low. Man risk, machine risk and method risk are the key factors affecting the overall risk of the project. The evaluation results of the first-level indexes are discussed, and targeted countermeasures are proposed. Therefore, management personnel can deeply understand the construction safety risks of prefabricated subway stations.

Originality/value

This research fills the research gap in the field of construction safety risk assessment of prefabricated subway stations. The methods for construction safety risk assessment are summarized to establish a reliable hybrid evaluation model, laying the foundation for future research. Moreover, the construction safety risk evaluation index system for prefabricated subway stations is proposed, which can be adopted to guide construction safety management.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 December 2023

Xufan Zhang, Xue Fan and Mingke He

The challenges faced by China's high-end equipment manufacturing (HEEM) industry are becoming clearer in the process of global supply chain (GSC) reconfiguration. The purpose of…

Abstract

Purpose

The challenges faced by China's high-end equipment manufacturing (HEEM) industry are becoming clearer in the process of global supply chain (GSC) reconfiguration. The purpose of this study is to investigate how China's HEEM industry has been affected by the GSC reconfiguration, as well as its short- and long-term strategies.

Design/methodology/approach

The authors adopted a multi-method approach. Interviews were conducted in Phase 1, while a three-round Delphi survey was conducted in Phase 2 to reach consensus at the industry level.

Findings

The GSC reconfiguration affected China's HEEM supply chain (SC). Its direct effects include longer lead times, higher purchasing prices and inconsistent supply and inventory levels of key imported components and materials. Its indirect effects include inconsistent product quality and cash flows. In the short term, China's HEEM enterprises have sought to employ localized substitutes, while long-term strategies include continuous technological innovation, industry upgrades and developing SC resilience.

Originality/value

This study not only encourages Chinese HEEM enterprises to undertake a comprehensive examination of their respective industries but also provides practical insights for SC scholars, policymakers and international stakeholders interested in how China's HEEM industry adapts to the GSC reconfiguration and gains global market share.

Details

International Journal of Physical Distribution & Logistics Management, vol. 54 no. 1
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 25 April 2024

Mengmeng Shan and Jingyi Zhu

This paper aims to investigate the relationship between corporate environmental, social and governance (ESG) ratings and leverage manipulation and the moderating effects of…

Abstract

Purpose

This paper aims to investigate the relationship between corporate environmental, social and governance (ESG) ratings and leverage manipulation and the moderating effects of internal and external supervision.

Design/methodology/approach

The authors draw on a sample of Chinese non-financial A-share-listed firms from 2013 to 2020 to explore the effect of ESG ratings on leverage manipulation. Robustness and endogeneity tests confirm the validity of the regression results.

Findings

ESG ratings inhibit leverage manipulation by improving social reputation, information transparency and financing constraints. This effect is weakened by internal supervision, captured by the ratio of institutional investor ownership, and strengthened by external supervision, captured by the level of marketization. The effect is stronger in non-state-owned firms and firms in non-polluting industries. The governance dimension of ESG exhibits the strongest effect, with comprehensive environmental governance ratings and social governance ratings also suppressing leverage manipulation.

Practical implications

Firms should strive to cultivate environmental awareness, fulfil their social responsibilities and enhance internal governance, which may help to strengthen the firm’s sustainability orientation, mitigate opportunistic behaviours and ultimately contribute to high-quality firm development. The top managers of firms should exercise self-restraint and take the initiative to reduce leverage manipulation by establishing an appropriate governance structure and sustainable business operation system that incorporate environmental and social governance in addition to general governance.

Social implications

Policymakers and regulators should formulate unified guidelines with comprehensive criteria to improve the scope and quality of ESG information disclosure and provide specific guidance on ESG practice for firms. Investors should incorporate ESG ratings into their investment decision framework to lower their portfolio risk.

Originality/value

This study contributes to the literature in four ways. Firstly, to the best of the authors’ knowledge, it is among the first to show that high ESG ratings may mitigate firms’ opportunistic behaviours. Secondly, it identifies the governance factor of leverage manipulation from the perspective of firms’ subjective sustainability orientation. Thirdly, it demonstrates that the relationship between ESG ratings and leverage manipulation varies with the level of internal and external supervision. Finally, it highlights the importance of governance in guaranteeing the other two dimensions’ roles by decomposing overall ESG.

Details

Sustainability Accounting, Management and Policy Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-8021

Keywords

Article
Publication date: 7 December 2022

Qing-Wen Zhang, Pin-Chao Liao, Mingxuan Liang and Albert P.C. Chan

Quality failures in grid infrastructure construction would cause large-scale collapses in power supply and additional expenditures by reworks and repairs. Learning from quality…

Abstract

Purpose

Quality failures in grid infrastructure construction would cause large-scale collapses in power supply and additional expenditures by reworks and repairs. Learning from quality failures (LFQF) extracts experience from previous quality events and converts them into preventive measures to reduce or eliminate future construction quality issues. This study aims to investigate the influence factors of LFQF in the construction of grid infrastructure.

Design/methodology/approach

The related factors of LFQF, including quality management (QM) practices, quality rectification, and individual learning, were identified by reviewing literature about organizational learning and extracting experience from previous failures. A questionnaire survey was distributed to the grid companies in North, Northeast, Northwest, East, Central, and Southwest China. 381 valid responses collected and analyzed using structural equation modeling (SEM) to test the influence of these factors on LFQF.

Findings

The SEM results support that QM practices positively affect individual learning and LFQF. Quality rectification indirectly impacts LFQF via individual learning, while the results did not support the direct link between quality rectification and LFQF.

Practical implications

The findings strengthen practical insights into extracting experience from poor-quality issues and continuous improvement. The contributory factors of LFQF found in this study benefit the practitioners by taking effective measures to enhance organizational learning capability and improve the long-term construction quality performance in the grid infrastructure industry.

Originality/value

Existing research about the application of LFQF still stays at the explorative and conceptual stage. This study investigates the related factors of LFQF, including QM practices, quality rectification, and individual learning, extending the model development of learning from failures (LFF) in construction QM.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 25 December 2023

Jiahe Wang, Huajian Li, Chengxian Ma, Chaoxun Cai, Zhonglai Yi and Jiaxuan Wang

This study aims to analyze the factors, evaluation techniques of the durability of existing railway engineering.

Abstract

Purpose

This study aims to analyze the factors, evaluation techniques of the durability of existing railway engineering.

Design/methodology/approach

China has built a railway network of over 150,000 km. Ensuring the safety of the existing railway engineering is of great significance for maintaining normal railway operation order. However, railway engineering is a strip structure that crosses multiple complex environments. And railway engineering will withstand high-frequency impact loads from trains. The above factors have led to differences in the deterioration characteristics and maintenance strategies of railway engineering compared to conventional concrete structures. Therefore, it is very important to analyze the key factors that affect the durability of railway structures and propose technologies for durability evaluation.

Findings

The factors that affect the durability and reliability of railway engineering are mainly divided into three categories: material factors, environmental factors and load factors. Among them, material factors also include influencing factors, such as raw materials, mix proportions and so on. Environmental factors vary depending on the service environment of railway engineering, and the durability and deterioration of concrete have different failure mechanisms. Load factors include static load and train dynamic load. The on-site rapid detection methods for five common diseases in railway engineering are also proposed in this paper. These methods can quickly evaluate the durability of existing railway engineering concrete.

Originality/value

The research can provide some new evaluation techniques and methods for the durability of existing railway engineering.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 16 April 2024

Shweta Jha and Ramesh Chandra Dangwal

This paper aims to conduct a systematic literature review on the fintech services and financial inclusion of the developing nations that particularly focuses on lower…

Abstract

Purpose

This paper aims to conduct a systematic literature review on the fintech services and financial inclusion of the developing nations that particularly focuses on lower middle-income group nations (LMIGN) and upper middle-income group nations (UMIGN) to highlight the research areas that have not received attention and present opportunities for future research.

Design/methodology/approach

This paper adopts a systematic approach to examine 65 research articles published from 2016 to 2021, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

Findings

The study identifies research gaps in two key themes: backward and outward linkages. In backward linkages, the literature on UMIGN should pay attention to the behavioural patterns associated with lending, investment and market provision-related fintech services. Further research is needed to understand the relationship between fintech services on the usage and quality dimension of financial inclusion in both LMIGN and UMIGN. For outward linkages, future research work should explore the role of fintech and financial inclusion in the development of LMIGN. This study provides valuable insights and guides future research directions by comprehensively mapping the existing studies.

Research limitations/implications

This study does not use quantitative tools, such as meta and bibliometric analysis, to validate the findings.

Originality/value

This research paper offers new perspectives that introduce a novel framework for analysing literature on fintech, financial inclusion and its impact on the overall development of UMIGN and LMIGN.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 9 April 2024

Long Liu, Lifeng Wang and Ziwang Xiao

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the…

Abstract

Purpose

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the steel plate at the bottom of RC beams, aiming to solve the problem of over-reinforced RC beams and improve the bearing capacity of RC beams without affecting their ductility.

Design/methodology/approach

In this paper, the finite element model of ESRB was established by ABAQUS. The results were compared with the experimental results of ESRB in previous studies and the reliability of the finite element model was verified. On this basis, parameters such as the width of the steel plate, thickness of the ECC layer, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar were analyzed by the verified finite element model. Based on the load–deflection curve of ESRB, ESRB was discussed in terms of ultimate bearing capacity and ductility.

Findings

The results demonstrate that when the width of the steel plate increases, the ultimate load of ESRB increases to 133.22 kN by 11.58% as well as the ductility index increases to 2.39. With the increase of the damage degree of the original beam, the ultimate load of ESRB decreases by 23.7%–91.09 kN and the ductility index decreases to 1.90. With the enhancement of the cross-sectional area of longitudinal tensile rebar, the ultimate bearing capacity of ESRB increases to 126.75 kN by 6.2% and the ductility index elevates to 2.30. Finally, a calculation model for predicting the flexural capacity of ESRB is proposed. The calculated results of the model are in line with the experimental results.

Originality/value

Based on the comparative analysis of the test results and numerical simulation results of 11 test beams, this investigation verified the accuracy and reliability of the finite element simulation from the aspects of load–deflection curve, characteristic load and failure mode. Furthermore, based on load–deflection curve, the effects of steel plate width, ECC layer thickness, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar on the ultimate bearing capacity and ductility of ESRB were discussed. Finally, a simplified method was put forward to further verify the effectiveness of ESRB through analytical calculation.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 279