Search results

1 – 10 of over 2000
Open Access
Article
Publication date: 6 February 2024

Tiprawee Tongtummachat, Attasak Jaree and Nattee Akkarawatkhoosith

This article presents our experience in implementing the assessment for learning process (AfL) to enhance the teaching–learning quality, which has faced numerous challenges…

Abstract

Purpose

This article presents our experience in implementing the assessment for learning process (AfL) to enhance the teaching–learning quality, which has faced numerous challenges impacting educational quality. The effectiveness of this technique is demonstrated through a case study conducted in a core course of chemical engineering.

Design/methodology/approach

The article shares insights into the systematic course design and planning processes that were discussed and developed through AfL practices. Significant emphasis is placed on implementing formative and summative student self-assessment surveys as simple yet effective methods to meet this purpose. Quantitative data were collected and analyzed over three consecutive academic years (2020–2022) using various statistical parameters such as percentage, interquartile range and the program’s numerical goal (%G).

Findings

The AfL process via formative and summative surveys could significantly and effectively improve teaching–learning quality. These findings assist educators in identifying appropriate teaching methods and recognizing areas of weakness and strength, thereby facilitating continuous improvement in the teaching–learning quality. Validation methods, including quizzes and numerical grades, were employed to practically verify the outcome obtained from the questionnaires.

Practical implications

The AfL techniques demonstrated in this study can be directly implemented or adapted for various educational fields to enhance the teaching–learning quality.

Originality/value

The practical implementation of AfL in an engineering context has hardly been reported, particularly in chemical engineering. This work represents the practical implementation of AfL to enhance engineering field education.

Details

Journal of Research in Innovative Teaching & Learning, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2397-7604

Keywords

Article
Publication date: 27 September 2023

Siddhesh Umesh Mestry, Vardhan B. Satalkar and S.T. Mhaske

This study aims to describe the design and synthesis of two novel azo and imine chromophores-based dyes derived from two different aldehydes with intramolecular colour matching…

Abstract

Purpose

This study aims to describe the design and synthesis of two novel azo and imine chromophores-based dyes derived from two different aldehydes with intramolecular colour matching that are pH sensitive.

Design/methodology/approach

The visible absorption wavelength (λmax) was extended when azo chromophore was included in imine-based systems. The dyed patterns created sophisticated colour-changing paper packaging sensors with pH-sensitive chromophores using alum as a mediator or mordant. Due to the tight adhesive bonding, the dyes on paper’s cellulose fibres could not be removed by ordinary water even at extremely high or low pH, which was confirmed by scanning electron microscopy analysis. The dyed patterns demonstrated an evident, sensitive and fast colour-changing mechanism with varying pH, from pale yellow to red for Dye-I and from pale yellow to brown-violet for Dye-II.

Findings

The λmax for colour changing was recorded from 400 to 490 nm for Dye-I, whereas from 400 to 520 for Dye-II. The freshness judgement of food was checked using actual experiments with cooked crab spoilage, where the cooked crab was incubated at 37 oC for 6 h to see the noticeable colour change from yellow to brown-violet with Dye-II. The colour-changing mechanism was studied with Fourier transform infrared (FTIR) spectra at different pH, and thin layer chromatography, nuclear magnetic resonance and FTIR spectroscopy studied the desired structure formation of the dyes. Potential uses for smart packaging sensors include quickly detecting food freshness during transportation or right before consumption.

Originality/value

1. Two novel azo-imine dyes have been synthesized with a pH-responsive effect. 2. The pH-responsive mechanism was studied. 3. The study was supported by computational chemistry using density functional theory. 4. The obtained dyes were used to make pH-responsive sensors for seafood packaging to judge the freshness.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 28 March 2024

Alessandra Schopf da Silveira, Carmen Brum Rosa and Julio Cezar Mairesse Siluk

This work sought to analyze targeted innovation strategies used during the pandemic to maintain companies’ competitiveness.

Abstract

Purpose

This work sought to analyze targeted innovation strategies used during the pandemic to maintain companies’ competitiveness.

Design/methodology/approach

The methodology was a systematic literature review, analyzing how these factors can be used as leverage in decision-making and suggesting a framework tool.

Findings

As a result, nine factors were identified as drivers to stimulate competitiveness, bringing insights to structure actions in times of crisis to support agribusiness.

Research limitations/implications

With this work, it is possible that other companies can base themselves and use the strategic drivers of innovation evidenced to remain competitive in the market during a period of crisis. As this is a systematic review of the literature, the application of a case study, for example, is a limitation, which could be a continuation of the work.

Practical implications

As this is a systematic review of the literature, the application of a case study, for example, is a limitation, which could be a continuation of the work.

Originality/value

This work has high value because it brings insights into strategic drivers of innovation that tend to leverage or maintain the competitiveness of agribusinesses in times of crisis. With the discussion carried out on the data obtained, it is possible that agribusinesses or other types of companies can be based for decision-making in a crisis scenario from innovative actions that generate competitive advantage.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 31 July 2023

Iniya Dinakaran, Chowdhury Sakib-Uz-Zaman, Arafater Rahman and Mohammad Abu Hasan Khondoker

This paper aims to understand the effect of extrusion conditions on the degree of foaming of polylactic acid (PLA) during three-dimensional (3D) printing. It was also targeted to…

Abstract

Purpose

This paper aims to understand the effect of extrusion conditions on the degree of foaming of polylactic acid (PLA) during three-dimensional (3D) printing. It was also targeted to optimize the slicing parameters for 3D printing and to study how the properties of printed parts are influenced by the extrusion conditions.

Design/methodology/approach

This study used a commercially available PLA filament that undergoes chemical foaming. An extrusion 3D printer was used to produce individual extrudates and print samples that were characterized using an optical microscope, scanning electron microscope and custom in-house apparatuses.

Findings

The degree of foaming of the extrudates was found to strongly depend on the extrusion temperature and the material feed speed. Higher temperatures significantly increased the number of nucleation sites for the blowing agent as well as the growth rate of micropores. Also, as the material feed speed increased, the micropores were allowed to grow bigger which resulted in higher degrees of foaming. It was also found that, as the degree of foaming increased, the porous parts printed with optimized slicing parameters were lightweight and thermally less conductive.

Originality/value

This study fills the gap in literature where it examines the foaming behavior of individual extrudates as they are extruded. By doing so, this work distinguishes the effect of extrusion conditions from the effect of slicing parameters on the foaming behavior which enhances the understanding of extrusion of chemically foamed PLA.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 May 2023

Zeliha Betül Kol and Dilek Duranoğlu

This study aims to model and investigate Basic Yellow 28 (BY28) adsorption onto activated carbon in batch and continuous process.

Abstract

Purpose

This study aims to model and investigate Basic Yellow 28 (BY28) adsorption onto activated carbon in batch and continuous process.

Design/methodology/approach

Batch adsorption experiments were carried out at 25 °C with 50 mg/L BY28 solution at pH 6 with different amounts of activated carbon. Freundlich and Langmuir adsorption isotherm models were used to model batch data. Pseudo-first-order and pseudo-second-order kinetic models were applied with linear regression. The changes of the breakthrough curve with the column height, flow rate, column diameter and adsorbent amount were examined in fixed bed column at room temperature. BY28 adsorption data were modelled by using different adsorption column models (Adams & Bohart, Thomas, Yoon & Nelson, Clark and modified dose–response) with non-linear regression.

Findings

Freundlich model and pseudo-second-order kinetic model expressed the experimental data with high compatibility. Modified dose-response model corresponded to the fixed bed column data very well.

Originality/value

Adsorption of Basic Yellow 28 on activated carbon in a fixed bed column was studied for the first time. Continuous adsorption process was modelled with theoretical adsorption models using non-linear regression.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 November 2023

Nurol Huda Dahalan, Rahimi A. Rahman, Siti Hafizan Hassan and Saffuan Wan Ahmad

Evaluating the implementation of environmental management plans (EMPs) in highway construction projects is essential to avoid climate change. Public evaluations can help ensure…

Abstract

Purpose

Evaluating the implementation of environmental management plans (EMPs) in highway construction projects is essential to avoid climate change. Public evaluations can help ensure that the EMP is implemented correctly and efficiently. To allow public evaluation of EMP implementations, this study aims to investigate performance indicators (PIs) for assessing EMP implementation in highway construction projects. To that end, the study objectives are to compare the critical PIs between environment auditors (EAs) and environment officers (EOs) and among the main project stakeholders (i.e. clients, contractors and consultants), create components for the critical PIs and assess the efficiency of the components.

Design/methodology/approach

The paper identified 39 PIs from interviews with environmental professionals and a systematic literature review. Then a questionnaire survey was developed based on the PIs and sent to EAs and EOs. The data were analyzed via mean score ranking, normalization, agreement analysis, factor analysis and fuzzy synthetic evaluation (FSE).

Findings

The analyses revealed 21 critical PIs for assessing EMP implementation in highway construction projects. Also, the critical PIs can be grouped into four components: ecological, pollution, public safety and ecological. Finally, the overall importance of the critical PIs from the FSE is between important and very important.

Originality/value

To the best of the authors’ knowledge, this paper is the first-of-its-kind study on the critical PIs for assessing EMP implementation in highway construction projects.

Details

International Journal of Disaster Resilience in the Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 25 December 2023

Umair Khan, William Pao, Karl Ezra Salgado Pilario, Nabihah Sallih and Muhammad Rehan Khan

Identifying the flow regime is a prerequisite for accurately modeling two-phase flow. This paper aims to introduce a comprehensive data-driven workflow for flow regime…

70

Abstract

Purpose

Identifying the flow regime is a prerequisite for accurately modeling two-phase flow. This paper aims to introduce a comprehensive data-driven workflow for flow regime identification.

Design/methodology/approach

A numerical two-phase flow model was validated against experimental data and was used to generate dynamic pressure signals for three different flow regimes. First, four distinct methods were used for feature extraction: discrete wavelet transform (DWT), empirical mode decomposition, power spectral density and the time series analysis method. Kernel Fisher discriminant analysis (KFDA) was used to simultaneously perform dimensionality reduction and machine learning (ML) classification for each set of features. Finally, the Shapley additive explanations (SHAP) method was applied to make the workflow explainable.

Findings

The results highlighted that the DWT + KFDA method exhibited the highest testing and training accuracy at 95.2% and 88.8%, respectively. Results also include a virtual flow regime map to facilitate the visualization of features in two dimension. Finally, SHAP analysis showed that minimum and maximum values extracted at the fourth and second signal decomposition levels of DWT are the best flow-distinguishing features.

Practical implications

This workflow can be applied to opaque pipes fitted with pressure sensors to achieve flow assurance and automatic monitoring of two-phase flow occurring in many process industries.

Originality/value

This paper presents a novel flow regime identification method by fusing dynamic pressure measurements with ML techniques. The authors’ novel DWT + KFDA method demonstrates superior performance for flow regime identification with explainability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2024

Umesh Mahajan and S.T. Mhaske

This study aims to focus on how reactive diluents with mono- and di-functionalities affect the properties of resin formulation developed from bioderived precursors. A hydroxyethyl…

Abstract

Purpose

This study aims to focus on how reactive diluents with mono- and di-functionalities affect the properties of resin formulation developed from bioderived precursors. A hydroxyethyl methacrylate (HEMA) terminated urethane acrylate oligomer was synthesized and characterized to study its application in stereolithography 3D printing with different ratios of isobornyl acrylate and hexanediol diacrylate.

Design/methodology/approach

Polyester polyol was synthesized from suberic acid and butanediol. Additionally, isophorone diisocyanate, polyester polyol and HEMA were used to create urethane acrylate oligomer. Fourier transform infrared spectroscopy and 1H NMR were used to characterize the polyester polyol and oligomer. Various formulations were created by combining oligomer with reactive diluents in concentrations ranging from 0% to 30% by weight and curing with ultraviolet (UV) radiation. The cured coatings and 3D printed specimens were then evaluated for their properties.

Findings

The findings revealed an improvement in thermal stability, contact angle value, tensile strength and surface properties of the product which indicated its suitability for use as a 3D printing material.

Originality/value

This study discusses how oligomers that have been cured by UV radiation with mono- and difunctional reactive diluents give excellent coating characteristics and demonstrate suitability and stability for 3D printing applications.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 June 2023

Xin Feng, Xu Wang and Mengxia Qi

In the era of the digital economy, higher demands are placed on versatile talents, and the cultivation of students with innovative and entrepreneurial abilities has become an…

Abstract

Purpose

In the era of the digital economy, higher demands are placed on versatile talents, and the cultivation of students with innovative and entrepreneurial abilities has become an important issue for the further development of higher education, thus leading to extensive and in-depth research by many scholars. The study summarizes the characteristics and patterns of dual-innovation education at different stages of development, hoping to provide a systematic model for the development of dual-innovation education in China and make up for the shortcomings.

Design/methodology/approach

This paper uses Citespace software to visualize and analyze the relevant literature in CNKI and Web of Science databases from a bibliometric perspective, focusing on quantitative analysis in terms of article trends, topic clustering, keyword co-linear networks and topic time evolution, etc., to summarize and sort out the development of innovation and entrepreneurship education research at home and abroad.

Findings

The study found that the external characteristics of the literature published in the field of bi-innovation education in China and abroad are slightly different, mainly in that foreign publishers are more closely connected and have formed a more stable ecosystem. In terms of research hotspots, China is still in a critical period of reforming its curriculum and teaching model, and research on the integration of specialization and creative education is in full swing, while foreign countries focus more on the cultivation of students' entrepreneurial awareness and the enhancement of individual effectiveness. In terms of cutting-edge analysis, the main research directions in China are “creative education”, “new engineering”, “integration of industry and education” and “rural revitalization”.

Originality/value

Innovation and entrepreneurship education in China is still in its infancy, and most of the studies lack an overall overview and comparison of foreign studies. Based on the econometric analysis of domestic and foreign literature, this paper proposes a path for domestic innovation and entrepreneurship education reform that can make China's future education reform more effective.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 7 March 2024

Mohammed Ali Abd Ali Alsemari and Manu Ramegowda

The oil and gas industry form the main resource of economy in Iraq and constructing any project in such sectors requires a huge amount of expenses due to the unique requirements…

Abstract

Purpose

The oil and gas industry form the main resource of economy in Iraq and constructing any project in such sectors requires a huge amount of expenses due to the unique requirements that oil and gas facilities required in such projects. Therefore, adopting an appropriate technological approach such as building information modeling (BIM) which is unfortunately not adopted yet in Iraq is essential to successfully deliver these projects. Thus, this paper aimed to introduce BIM to Iraq through Basra Oil Company (BOC) which is one of the biggest public oil and gas companies in Iraq.

Design/methodology/approach

The related literature of journals articles, conference proceedings and published reports have been reviewed. As a result, firstly: a hypothesis has been derived that is “If Basra Oil Company (BOC) adopts and applies BIM approach instead of the 2D approach currently used to manage its projects, the company can overcome several constraints in managing its projects that associated with such 2D traditional approach”; secondly: homogenous, consistence and reliable web-based questionnaire has been designed as its Cronbach’s alpha equal to 0.897 and 0.711 for BIM benefits and barriers, respectively. This questionnaire distributed to the BOC related professionals to test such hypothesis by investigating their readiness and accepting of BIM approach and to rank BIM barriers based on five-point Likert scale.

Findings

Based on the analysis using IBM SPSS Statistics 26 of 115 responses, almost 50% of the respondents had experience 11–15 years, while 22.6% had experience more than 15 years in oil and gas industry construction projects. Those participants were from diverse engineering majors that are: 4.3% Architectural Engineers, 31.3% Civil Engineers, 20% Mechanical Engineers, 22.6% Electrical Engineers and 21.7% from other engineering majors. The respondents’ departments demography was 16.5% of design department, 12.2% of construction department, 20.9% of Project Management Department, 12.2% of Maintenance department, 4.3% of HSE Department, 13% of Production Department and 20.9% of “Other Department.” The study resulted in 1: accepting BIM approach to be an alternative of current 2D-traditional approach used by the company to manage and construct its projects, since mean of collected data is (4.4332), Kruskal–Wallis H test significance values were 0.398 and 0.372; and ANOVA test significance values were 0.433 and 0.599 among Engineering Majors groups and Company’s Department groups, respectively. 2: Disclosed and sequenced BIM barriers in the company based on their criticality. 3: verifying reliably how BIM attributes are important to oil and gas construction projects in Iraq, 4: the company top management and company policies are the most critical potential factors to hinder or adopt and implement BIM in the company, 5: while cost is not seen a critical barrier to implement BIM in the oil and gas sector.

Research limitations/implications

The limitation of this study is the excluding of decision makers of BOC, thus more profound future studies need to be conducted where top management and decision makers are involved, particularly the present study demonstrated that support of company top management is the most critical factor which can help the company to adopt (BIM).

Originality/value

The study concludes that BIM approach is valuable for managing projects in oil and gas sector in Iraq and identify the originality in output by using the research method. This noble study provides a leverage for enhanced research to adopt and implement building information modeling (BIM) in Iraq as the study originally demonstrates benefits and identifies the critical barriers in BIM implementation to push the boundaries toward adopt Digitalization and reduce CO2 emission in Iraqi oil and gas sector. The study can be used as evidence and platform to encourage professionals and practitioners to present more sophisticated tools of BIM in the oil and gas industry, especially for facility and operation management. These findings achieved via oil and gas experts, and it is first time to achieve such findings from a case study in Iraqi oil and gas sector.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of over 2000