Search results

1 – 10 of over 32000
Article
Publication date: 31 May 2011

A. Kaveh and S. Talatahari

Meta‐heuristic methods are powerful in obtaining the solution of optimization problems. Hybridizing of the meta‐heuristic algorithms provides a scope to improve the searching

Abstract

Purpose

Meta‐heuristic methods are powerful in obtaining the solution of optimization problems. Hybridizing of the meta‐heuristic algorithms provides a scope to improve the searching abilities of the resulting method. The purpose of this paper is to provide a new hybrid algorithm by adding positive properties of the particle swarm optimization (PSO) algorithms to the charged system search (CSS) to solve constrained engineering optimization problems.

Design/methodology/approach

The main advantages of the PSO consisting of directing the agents toward the global best (obtained by the swarm) and the local best (obtained by the agent itself) are added to the CSS algorithm to improve its performance. In the present approach, similar to the original CSS, each agent is affected by other agents considering the governing laws of electrical physics. However, the kind of the forces can be repulsive and attractive. In order to handle the constraints, the fly‐to‐boundary method is utilized as an improved feasible‐based method.

Findings

Four variants of hybrid methods are proposed. In these algorithms, the charged memory (CM) is changed to save the local best positions of agents. Utilizing this new CM to determine the direction and amount of movement of agents improve the power of the algorithms. When only this memory is utilized (method I), exploitation ability of the algorithm increases and when only two agents from CM in addition to other agents in the current iteration are used, then the exploration ability increases (method II). In order to have a good balance between exploration and exploitation of the algorithms, methods III and IV are proposed, where some agents of the memory and some other from the current agents are utilized. Method IV in which the numbers of used agents from the CM increase linearly, has a better search ability in addition to a powerful exploitation making this variant superior compared to the others.

Originality/value

In this paper, four hybrid methods are presented and applied to some benchmark engineering optimization problems. The new algorithms are compared to those of the other advanced meta‐heuristic methods to illustrate the effectiveness of the proposed methods.

Details

Engineering Computations, vol. 28 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 May 2018

Mehmet Eren Uz, Pezhman Sharafi, Mahya Askarian, Weiqing Fu and Chunmei Zhang

The preliminary layout design of structures impacts upon the entire design process and, consequently, the total cost. The purpose of this paper is to select the most economical…

Abstract

Purpose

The preliminary layout design of structures impacts upon the entire design process and, consequently, the total cost. The purpose of this paper is to select the most economical layouts that satisfy structural and architectural requirements, while considering the reciprocal effects of cost factors and layout variables at the preliminary stages of design.

Design/methodology/approach

This paper presents an automated method for cost optimization of geometric layout design of multi-span reinforced concrete (RC) beams subjected to dynamic loading by using the charged system search (CSS) algorithm. First, a novel cost optimization approach for geometric layout problems is introduced, in which both cost parameters and dynamic responses are considered in the preliminary layout design of beams. The proposed structural optimization problem with constraints on the static and dynamic equilibrium, architectural dimensions and structural action effects is solved using the CSS algorithm.

Findings

The proposed CSS algorithm for solving the cost optimization problem can be easily used for optimizing the span lengths and is also capable of working with various cost functions. The presented examples show that the proposed algorithm using the new cost optimization function provides satisfactory results and can result in over 7 per cent cost saving.

Originality/value

This is an original paper proposing a novel methodology for preliminary layout design of concrete beams.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 April 2017

Maryam Daei and S. Hamid Mirmohammadi

The efficiency of the finite element analysis via force method depends on the overall flexibility matrix of the structure, while this matrix is directly affected from null bases…

Abstract

Purpose

The efficiency of the finite element analysis via force method depends on the overall flexibility matrix of the structure, while this matrix is directly affected from null bases vectors. As the null bases for an indeterminate structure are not unique, for an optimal analysis, the selected null bases should be sparse and banded corresponding to sparse, banded and well-conditioned flexibility matrix. This paper aims to present an efficient method for the formation of optimal flexibility matrix of finite element models comprising tetrahedron elements via mathematical optimization technique.

Design/methodology/approach

For this purpose, a linear mixed integer programming model is presented for finding sparse solution of underdetermined linear system, which is correspond to sparse null vector. The charged system search algorithm is improved and used to find the best generator for formation of null bases.

Findings

The efficiency of the present method is illustrated through some examples. The proposed method leads to highly sparse, banded and accurate null basis matrices. It makes an efficient force method feasible for the analysis of finite element model comprising tetrahedron elements.

Originality/value

The force method, in which the member forces are used as unknowns, can be appealing to engineers. The main problem in the application of the force method is the formation of a self-stress matrix corresponding to a sparse flexibility matrix. In this paper, the highly sparse, banded and accurate null basis matrices gains by using mathematical optimization technique.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 June 2020

Sajad Ahmad Rather and P. Shanthi Bala

In this paper, a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm (CPSOGSA) has been…

Abstract

Purpose

In this paper, a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm (CPSOGSA) has been employed for training MLP to overcome sensitivity to initialization, premature convergence, and stagnation in local optima problems of MLP.

Design/methodology/approach

In this study, the exploration of the search space is carried out by gravitational search algorithm (GSA) and optimization of candidate solutions, i.e. exploitation is performed by particle swarm optimization (PSO). For training the multi-layer perceptron (MLP), CPSOGSA uses sigmoid fitness function for finding the proper combination of connection weights and neural biases to minimize the error. Secondly, a matrix encoding strategy is utilized for providing one to one correspondence between weights and biases of MLP and agents of CPSOGSA.

Findings

The experimental findings convey that CPSOGSA is a better MLP trainer as compared to other stochastic algorithms because it provides superior results in terms of resolving stagnation in local optima and convergence speed problems. Besides, it gives the best results for breast cancer, heart, sine function and sigmoid function datasets as compared to other participating algorithms. Moreover, CPSOGSA also provides very competitive results for other datasets.

Originality/value

The CPSOGSA performed effectively in overcoming stagnation in local optima problem and increasing the overall convergence speed of MLP. Basically, CPSOGSA is a hybrid optimization algorithm which has powerful characteristics of global exploration capability and high local exploitation power. In the research literature, a little work is available where CPSO and GSA have been utilized for training MLP. The only related research paper was given by Mirjalili et al., in 2012. They have used standard PSO and GSA for training simple FNNs. However, the work employed only three datasets and used the MSE performance metric for evaluating the efficiency of the algorithms. In this paper, eight different standard datasets and five performance metrics have been utilized for investigating the efficiency of CPSOGSA in training MLPs. In addition, a non-parametric pair-wise statistical test namely the Wilcoxon rank-sum test has been carried out at a 5% significance level to statistically validate the simulation results. Besides, eight state-of-the-art meta-heuristic algorithms were employed for comparative analysis of the experimental results to further raise the authenticity of the experimental setup.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 12 October 2020

Ali Kaveh, Hossein Akbari and Seyed Milad Hosseini

This paper aims to present a new physically inspired meta-heuristic algorithm, which is called Plasma Generation Optimization (PGO). To evaluate the performance and capability of…

Abstract

Purpose

This paper aims to present a new physically inspired meta-heuristic algorithm, which is called Plasma Generation Optimization (PGO). To evaluate the performance and capability of the proposed method in comparison to other optimization methods, two sets of test problems consisting of 13 constrained benchmark functions and 6 benchmark trusses are investigated numerically. The results indicate that the performance of the proposed method is competitive with other considered state-of-the-art optimization methods.

Design/methodology/approach

In this paper, a new physically-based metaheuristic algorithm called plasma generation optimization (PGO) algorithm is developed for solving constrained optimization problems. PGO is a population-based optimizer inspired by the process of plasma generation. In the proposed algorithm, each agent is considered as an electron. Movement of electrons and changing their energy levels are based on simulating excitation, de-excitation and ionization processes occurring through the plasma generation. In the proposed PGO, the global optimum is obtained when plasma is generated with the highest degree of ionization.

Findings

A new physically-based metaheuristic algorithm called the PGO algorithm is developed that is inspired from the process of plasma generation.

Originality/value

The results indicate that the performance of the proposed method is competitive with other state-of-the-art methods.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 February 2023

Qasim Zaheer, Mir Majaid Manzoor and Muhammad Jawad Ahamad

The purpose of this article is to analyze the optimization process in depth, elaborating on the components of the entire process and the techniques used. Researchers have been…

Abstract

Purpose

The purpose of this article is to analyze the optimization process in depth, elaborating on the components of the entire process and the techniques used. Researchers have been drawn to the expanding trend of optimization since the turn of the century. The rate of research can be used to measure the progress and increase of this optimization procedure. This study is phenomenal to understand the optimization process and different algorithms in addition to their application by keeping in mind the current computational power that has increased the implementation for several engineering applications.

Design/methodology/approach

Two-dimensional analysis has been carried out for the optimization process and its approaches to addressing optimization problems, i.e. computational power has increased the implementation. The first section focuses on a thorough examination of the optimization process, its objectives and the development of processes. Second, techniques of the optimization process have been evaluated, as well as some new ones that have emerged to overcome the above-mentioned problems.

Findings

This paper provided detailed knowledge of optimization, several approaches and their applications in civil engineering, i.e. structural, geotechnical, hydraulic, transportation and many more. This research provided tremendous emerging techniques, where the lack of exploratory studies is to be approached soon.

Originality/value

Optimization processes have been studied for a very long time, in engineering, but the current computational power has increased the implementation for several engineering applications. Besides that, different techniques and their prediction modes often require high computational strength, such parameters can be mitigated with the use of different techniques to reduce computational cost and increase accuracy.

Details

Engineering Computations, vol. 40 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 June 2017

Janagaraman Radha, Srikrishna Subramanian, Sivarajan Ganesan and Manoharan Abirami

This study aims to minimize operating cost, adhere to pollution norms and maintain reserve and voltage levels subject to various operational concerns, including non linear…

Abstract

Purpose

This study aims to minimize operating cost, adhere to pollution norms and maintain reserve and voltage levels subject to various operational concerns, including non linear characteristics of generators and fuel limitation issues, which are useful for the current power system applications.

Design/methodology/approach

Improved control settings are required while considering multiple conflicting operational objectives that necessitate using the modern bio-inspired algorithm ant lion optimizer (ALO) as the main optimization tool. Fuzzy decision-making mechanism is incorporated in ALO to extract the best compromise solution (BCS) among set of non-dominated solutions.

Findings

The BCS records of IEEE-30 bus and JEAS-118 bus systems are updated in this work. Numerical simulation results comparison and comprehensive performance analysis justify the applicability of the intended algorithm to solve multi-objective dynamic optimal power flow (DOPF) problem over the state-of-art methods.

Originality/value

Optimal control settings are obtained for IEEE-30 and JEAS-118 bus systems with the objectives of minimizing fuel cost and emission in dynamic environment considering take-or-pay fuel contract issue. The fuzzy supported ALO (FSALO) is applied first time to solve the DOPF problem.

Details

International Journal of Energy Sector Management, vol. 11 no. 2
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 6 February 2020

Sajad Ahmad Rather and P. Shanthi Bala

The purpose of this paper is to investigate the performance of chaotic gravitational search algorithm (CGSA) in solving mechanical engineering design frameworks including welded…

Abstract

Purpose

The purpose of this paper is to investigate the performance of chaotic gravitational search algorithm (CGSA) in solving mechanical engineering design frameworks including welded beam design (WBD), compression spring design (CSD) and pressure vessel design (PVD).

Design/methodology/approach

In this study, ten chaotic maps were combined with gravitational constant to increase the exploitation power of gravitational search algorithm (GSA). Also, CGSA has been used for maintaining the adaptive capability of gravitational constant. Furthermore, chaotic maps were used for overcoming premature convergence and stagnation in local minima problems of standard GSA.

Findings

The chaotic maps have shown efficient performance for WBD and PVD problems. Further, they have depicted competitive results for CSD framework. Moreover, the experimental results indicate that CGSA shows efficient performance in terms of convergence speed, cost function minimization, design variable optimization and successful constraint handling as compared to other participating algorithms.

Research limitations/implications

The use of chaotic maps in standard GSA is a new beginning for research in GSA particularly convergence and time complexity analysis. Moreover, CGSA can be used for solving the infinite impulsive response (IIR) parameter tuning and economic load dispatch problems in electrical sciences.

Originality/value

The hybridization of chaotic maps and evolutionary algorithms for solving practical engineering problems is an emerging topic in metaheuristics. In the literature, it can be seen that researchers have used some chaotic maps such as a logistic map, Gauss map and a sinusoidal map more rigorously than other maps. However, this work uses ten different chaotic maps for engineering design optimization. In addition, non-parametric statistical test, namely, Wilcoxon rank-sum test, was carried out at 5% significance level to statistically validate the simulation results. Besides, 11 state-of-the-art metaheuristic algorithms were used for comparative analysis of the experimental results to further raise the authenticity of the experimental setup.

Article
Publication date: 2 November 2015

N Jayakumar, S Subramanian, S Ganesan and E. B. Elanchezhian

The combined heat and power dispatch (CHPD) aims to optimize the outputs of online units in a power plant consisting thermal generators, co-generators and heat-only units…

Abstract

Purpose

The combined heat and power dispatch (CHPD) aims to optimize the outputs of online units in a power plant consisting thermal generators, co-generators and heat-only units. Identifying the operating point of a co-generator within its feasible operating region (FOR) is difficult. This paper aims to solve the CHPD problem in static and dynamic environments.

Design/methodology/approach

The CHPD plant operation is formulated as an optimization problem under static and dynamic load conditions with the objectives of minimizations of cost and emissions subject to various system and operational constraints. A novel bio-inspired search technique, grey wolf optimization (GWO) algorithm is used as an optimization tool.

Findings

The GWO-based algorithm has been developed to determine the preeminent power and heat dispatch of operating units within the FOR region. The proposed methodology provides fuel cost savings and lesser pollutant emissions than those in earlier reports. Particularly, the GWO always keeps the co-generator’s operating point within the FOR, whereas most of the existing methods fail.

Originality/value

The GWO is applied for the first time to solve the CHPD problems. New dispatch schedules are reported for 7-unit system with the objectives of total fuel cost and emission minimizations, 24-unit system for economic operation and 11-unit system in dynamic environment. The simulation experiments reveal that GWO converges quickly, consistent and the statistical performance clears its applicability to CHPD problems.

Details

International Journal of Energy Sector Management, vol. 9 no. 4
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 8 August 2016

Asma Chakri, Rabia Khelif and Mohamed Benouaret

The first order reliability method requires optimization algorithms to find the minimum distance from the origin to the limit state surface in the normal space. The purpose of…

1137

Abstract

Purpose

The first order reliability method requires optimization algorithms to find the minimum distance from the origin to the limit state surface in the normal space. The purpose of this paper is to develop an improved version of the new metaheuristic algorithm inspired from echolocation behaviour of bats, namely, the bat algorithm (BA) dedicated to perform structural reliability analysis.

Design/methodology/approach

Modifications have been embedded to the standard BA to enhance its efficiency, robustness and reliability. In addition, a new adaptive penalty equation dedicated to solve the problem of the determination of the reliability index and a proposition on the limit state formulation are presented.

Findings

The comparisons between the improved bat algorithm (iBA) presented in this paper and other standard algorithms on benchmark functions show that the iBA is highly efficient, and the application to structural reliability problems such as the reliability analysis of overhead crane girder proves that results obtained with iBA are highly reliable.

Originality/value

A new iBA and an adaptive penalty equation for handling equality constraint are developed to determine the reliability index. In addition, the low computing time and the ease implementation of this method present great advantages from the engineering viewpoint.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 32000