Search results

1 – 10 of over 4000
Article
Publication date: 17 April 2020

Guirong Yang, Wenming Song, Zibo Zhu, Ying Ma and Yuan Hao

The paper aims to study the effect of liquid flow velocity on corrosion behavior of 20# steel at initial stage under (CO2/aqueous solution) gas–liquid two-phase plug flow…

Abstract

Purpose

The paper aims to study the effect of liquid flow velocity on corrosion behavior of 20# steel at initial stage under (CO2/aqueous solution) gas–liquid two-phase plug flow conditions.

Design/methodology/approach

Weight loss, scanning electron microscopy, energy-dispersive X-ray spectroscopy and XPS methods were used in this study.

Findings

The corrosion rate increased with the increasing liquid flow velocity at any different corrosion time. The corrosion rate decreased with the extension of corrosion time at the same liquid flow velocity. There was no continuous corrosion products film on the whole pipe wall at any different corrosion time. The macroscopic brown-yellow corrosion products on the pipe wall surface decreased with the increasing liquid flow velocity and the loose floccus corrosion products decreased gradually until these products were transformed into un-continuous needle-like dense products with the increasing liquid velocity. The main elements among the products film were Fe, C and O, and the main phases of products film on the pipe wall were Fe3C, FeCO3, FeOOH and Fe3O4. When the corrosion time was 1 h under different liquid–velocity condition, the thickness of local corrosion products film was from 3.5 to 3.8 µm.

Originality/value

The ion mass transfer model of corrosion process in pipe was put forward under gas–liquid two-phase plug flow condition. The total thickness of diffusion sublayer and turbulence sublayer decreased as well as the turbulence propagation coefficient increased with the increasing liquid velocity, which led to the increasing velocity of ion transfer during corrosion process. This was the fundamental reason for the increase of corrosion rate with the increasing liquid velocity.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 March 2021

Guirong Yang, Zhaoxia Pan, Zhenghai Zhang, Wenming Song, Ying Ma and Yuan Hao

This study aims to investigate the initial corrosion behavior in aqueous solution of 20# seamless steel under (CO2/aqueous solution) gas–liquid two-phase stratified flow…

Abstract

Purpose

This study aims to investigate the initial corrosion behavior in aqueous solution of 20# seamless steel under (CO2/aqueous solution) gas–liquid two-phase stratified flow conditions.

Design/methodology/approach

The initial corrosion behavior was studied through the weight loss methods, scanning electron microscopy with energy-dispersive x-ray spectroscopy and x-ray diffraction.

Findings

The corrosion rate of 20# steel obviously increases with the increasing gas pressure at different corrosion time when the CO2 pressure is less than 0.11 MPa, and the increase of corrosion rate tends to be steady when the pressure exceeds 0.11 MPa. With the increase of CO2 pressure, the corrosion products changed from flocculent to acicular, granular and scaly. A four-stage model for the growth of the corrosion product layer was proposed, namely, the diffusion reaction stage, the local film formation stage, the complete film formation stage and the densification stage of the product film.

Originality/value

A four-stage model for the growth of the corrosion product layer on the pipe wall surface under this condition was proposed, namely, the diffusion reaction stage, the local film formation stage, the complete film formation stage and the densification stage of the product film. The growing process and densification mechanism of corrosion products layer were discussed.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 December 2018

Yuanpeng Cheng, Yu Bai, Zili Li and JianGuo Liu

The purpose of this paper was to investigate the corrosion behavior of X65 steel in the CO2/oil/water environment using mass loss method, potentiodynamic polarization technique…

Abstract

Purpose

The purpose of this paper was to investigate the corrosion behavior of X65 steel in the CO2/oil/water environment using mass loss method, potentiodynamic polarization technique and characterization of the corroded surface techniques.

Design/methodology/approach

The weight loss analysis, electrochemical study and surface investigation were carried out on X65 steel that had been immersed in the CO2/oil/water corrosive medium to understand the corrosion behavior of gathering pipeline steel. The weight loss tests were carried out in a 3L autoclave, and effects of flow velocity, CO2 partial pressure and water cut on the CO2 corrosion rate of X65 steel were studied. Electrochemical studies were carried out in a three-electrode electrochemical cell with the test temperature of 60°C and CO2 partial pressure of 1 atm by recording open circuit potential/time and potentiodynamic polarization characteristics. The surface and cross-sectional morphologies of corrosion product scales were characterized using scanning electron microscopy. The phases of corrosion product scales were investigated using X-ray diffraction.

Findings

The results showed that corrosion rates of X65 steel both increased at first and then decreased with the increase of flow velocity and CO2 partial pressure, and there were critical velocity and critical pressure in the simulated corrosive environment, below the critical value, the corrosion products formed on the steel surface were loose, porous and unstable, higher than the critical value, the corrosion product ?lms were dense, strong adhesion, and had a certain protective effect. Meanwhile, when the flow velocity exceeded the critical value, oil film could be adsorbed on the steel surface more evenly, corrosion reaction active points were reduced and the steel matrix was protected from being corroded and crude oil played a role of inhibitor, thus it influenced the corrosion rate. Above the critical CO2 partial pressure, the solubility of CO2 in crude oil increased, the viscosity of crude oil decreased and its fluidity became better, so that the probability of oil film adsorption increased, these factors led to the corrosion inhibition of X65 steel reinforced. The corrosion characteristics of gathering pipeline steel in the corrosive environment containing CO2 would change due to the presence of crude oil.

Originality/value

The results can be helpful in selecting the suitable corrosion inhibitors and targeted anti-corrosion measures for CO2/oil/water corrosive environment.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 January 2011

Guo Cheng Lv, Zi Se Wang, Li Mei Wu and Chunchun Xu

The purpose of this paper is to investigate the microstructures, slag inclusions, morphology and composition of ancient Chinese iron coins exhumed from Emei Mountain and Baoji…

Abstract

Purpose

The purpose of this paper is to investigate the microstructures, slag inclusions, morphology and composition of ancient Chinese iron coins exhumed from Emei Mountain and Baoji after 818‐966 years of being imbedded underground.

Design/methodology/approach

Metallography, scanning electron microscopy, energy dispersive spectrometry, X‐ray photoelectron spectrometry and Fourier transform infrared spectroscopy were employed.

Findings

The results showed that archaeological coins exhibited characteristics of a typical hypoeutectic white cast iron, with slag inclusions of FeS strips and phosphate. Porous or hexagonal platey corrosion products were discovered on the archaeological iron coin, which were mainly identified as Fe2O3, FeOOH, Fex(OH)1−xCO3 and Fex(OH)1−xSO4. The possible corrosion mechanisms for the iron coins were discussed based on the corrosion products.

Originality/value

This study revealed the characterization of corrosion products on archaeological iron coins and may provide guidance for the preservation of archaeological iron.

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 June 2016

Lihua Gong, Qing Xing and Huihuang Wang

The purpose of this paper is to investigate the effect of welding procedure on the corrosion behaviors of weathering steel 09CuPCrNi in marine atmospheric environment. The…

Abstract

Purpose

The purpose of this paper is to investigate the effect of welding procedure on the corrosion behaviors of weathering steel 09CuPCrNi in marine atmospheric environment. The corrosion processes of weathering steel 09CuPCrNi and its welded joints in marine atmospheric environment were simulated by a salt spray dry-wet test.

Design/methodology/approach

The corrosion behaviors of the base metal and the welded joints at corrosion times of 2, 4, 8, 12, 24 weeks were investigated by weight loss test, electrochemical techniques, scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). The corrosion rates, as well as the morphologies and electrochemical characteristics of corrosion products, the distribution of major alloying elements in rust layer were obtained. The influence of welding on the atmospheric corrosion of 09CuPCrNi was studied.

Findings

The results indicate that the corrosion rate of the 09CuPCrNi welded joints decreases gradually with the corrosion time, and the major alloying elements are enriched in the inner rust layer, which are similar to that of the base metal. In the early stage during the corrosion process, the welded joints with inhomogeneous structure show the poorer corrosion resistance than that of the base metal. However, it looks the opposite way around in the late corrosion stage, when the uniform corrosion products with even thickness of the base metal tend to detach from the substrate easier and earlier and resulting in cracks, which increase the corrosion rate comparatively with that of the welded joints.

Originality/value

09CuPCrNi low alloy steel is a kind of typical weathering steel developed in China which is similar to Corten A developed by USA. Nowadays, 09CuPCrNi low alloy steel is widely adopted in many fields which require welding processes. In the past years, the research of weathering steel welded joints was mainly concentrated on the strength, toughness and weldability. Less work has been done to investigate the difference of corrosion evolution and characteristics between the base metal and its welded joints. Thus, the main objective of the present work was to analyze the influence of welding on the atmospheric corrosion.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 October 2018

Guirong Yang, Wenming Song, Fuqiang Wang, Ying Ma and Yuan Hao

This paper aims to investigate the corrosion rate, surface morphology and composition of corrosion products of 20# seamless steel in aqueous CO2 solution under stratified…

Abstract

Purpose

This paper aims to investigate the corrosion rate, surface morphology and composition of corrosion products of 20# seamless steel in aqueous CO2 solution under stratified gas-liquid two-phase flow condition. The development of a corrosion products layer has also been discussed.

Design/methodology/approach

The following methods were used: weight loss method, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction.

Findings

The corrosion rate curve presents an irregular zigzag change trend with a gradual increase in time. The peak value of the corrosion rate appears when the corrosion time is 4 h and 8 h. The corrosion products layer is composed of two sub-layers: the inner dense layer that is about 6 µm thick and the outer loose layer that is about 9 µm thick when the corrosion time is 8 h. The main corrosion product are FeCO3 and Fe2O3.

Originality/value

The atomic ratio of Fe/C/O is relatively stable for the inner dense layer, but changes in thickness for the outer loose layer. There is a densification stage after a loose corrosion products layer forms, and it is periodic.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 February 2022

Zhenhuan Gao, Yongxuan Liu, Chong Wang, Huisheng Yang, Lining Xu and Lijie Qiao

This study aims to report the CO2 corrosion performance of 3Cr steel and 3Cr2Al steel and reveal the role of aluminum in mitigating corrosion of low-Cr steel.

Abstract

Purpose

This study aims to report the CO2 corrosion performance of 3Cr steel and 3Cr2Al steel and reveal the role of aluminum in mitigating corrosion of low-Cr steel.

Design/methodology/approach

Aluminum was added to 3Cr steel to prepare a new type of 3Cr2Al steel, and the effect of aluminum on the corrosion resistance of pipeline steel was studied using morphology observation and composition analysis, weight loss tests and electrochemical test.

Findings

In the CO2/O2 coexistence environment, the average corrosion rate of the 3Cr2Al steel was obviously lower than that of the 3Cr steel. The addition of aluminum expanded the range of prepassivation, and the dynamic potential polarization curve of 3Cr2Al steel showed duplex prepassivation phenomena. 3Cr steel underwent severe local corrosion, and 3Cr2Al steel underwent uniform corrosion. The addition of aluminum contributed to the formation of a dense corrosion product layer and greatly reduced the localized corrosion sensitivity.

Originality/value

The studies on CO2 corrosion of aluminum containing low-Cr steel are quite rare. This study clarifies the role of aluminum by comparing the corrosion behavior of 3Cr2Al and 3Cr steel. The effect of aluminum on the growth of corrosion product film was discussed, and the duplex prepassivation phenomena of Cr and Al were revealed.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 31 January 2020

BaoJun Dong, Wei Liu, Fei Wu, JiaQi Zhu, Banthukul Wongpat, Yonggang Zhao, Yueming Fan and TianYi Zhang

The salinity of the oilfield produced water has a significant effect on steel corrosion. The purpose of this paper is to study the influence of salinity on corrosion behavior of

Abstract

Purpose

The salinity of the oilfield produced water has a significant effect on steel corrosion. The purpose of this paper is to study the influence of salinity on corrosion behavior of X60 steel and it also provides basic for material selection of gas wells with high salinity.

Design/methodology/approach

The weight loss experiment was carried out on steel with high temperature and high pressure autoclave. The surface morphology and composition of corrosion scales were studied by means of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry.

Findings

The results show that as salinity increases, the corrosion rate of X60 steel will gradually experience a rapid decline stage and then a slow decline stage. X60 steel is mainly exhibiting uniform corrosion in the first rapid decline stage and pitting corrosion in the second slow decline stage. The increase in salinity reduces gas solubility, which, in turn, changes the morphology and density of the corrosion scales of X60 steel. At low salinity, loose iron oxides generated on the surface of the steel, which poorly protects the substrate. At high salinity, surface of the steel gradually forms protective films. Chloride ions in the saline solution mainly affect the structure of the corrosion scales and initiate pitting corrosion. The increased chloride ions lead to more pitting pits on the surface of steel. The recrystallization of FeCO3 in pitting pits causes the corrosion scales to bulge.

Originality/value

The investigation determined the critical concentration of pitting corrosion and uniform corrosion of X60 steel, and the new corrosion mechanism model was presented.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 10 November 2020

Weiling Tuo, Shun'an Cao and Jie Zhong

The purpose of this study was to investigate the corrosion of low molecular organic acids from water-steam cycles such as acetic acid and formic acid in mental parts of steam…

Abstract

Purpose

The purpose of this study was to investigate the corrosion of low molecular organic acids from water-steam cycles such as acetic acid and formic acid in mental parts of steam turbine initial condensation zone.

Design/methodology/approach

The corrosion behavior of gray cast iron in initial condensate containing different concentrations of acetic acid and formic acid was studied by weight loss test, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction.

Findings

The results indicated that gray cast iron had a certain degree of corrosion in the simulated initial condensate containing acetic acid and formic acid, but the acid corrosion of gray cast iron was not only caused by low molecular organic acid but also affected by inorganic anions such as Cl. When Cl existed, after removing corrosion products, surface analysis results proved that the surface of gray cast iron was rough and uneven with many cracks, which was corrected more serious.

Originality/value

The corrosion behavior of thermal equipment by low molecular organic acids and inorganic anions in water-steam cycles was studied. The research results can provide theoretical guidelines for corrosion control of steam turbine in power plants.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 January 2009

Tuan Anh Nguyen and Xianming Shi

This research aims to unravel the role of salt contamination and corrosion inhibiting admixtures in the processes of cement hydration and rebar corrosion.

2155

Abstract

Purpose

This research aims to unravel the role of salt contamination and corrosion inhibiting admixtures in the processes of cement hydration and rebar corrosion.

Design/methodology/approach

Mortar samples were prepared with NaCl and one of three corrosion inhibitors, sodium nitrite, disodium β‐glycerophosphate, or N,N′‐dimethylethanolamine, admixed. After 28 days curing, all steel‐mortar samples were ponded with 3 percent NaCl solution and electrochemical impedance spectroscopy (EIS) measurements were conducted periodically during the first 48 days. After 60 days of ponding by 3 percent NaCl solution, field‐emission scanning electron microscopy (FESEM) analyses were conducted on the fracture surface of the steel‐mortar sample.

Findings

The FESEM results revealed that admixing chlorides and inhibitors in fresh mortar changed the morphology and cement hydration product of hardener mortar at the steel‐mortar interface. The EIS data indicated that all inhibitors increased the polarization resistance of steel, implying reduced corrosion rate of the steel over 48‐day exposures to salt ponding. 0.05 M N,N′‐dimethylethanolamine was the most effective corrosion inhibitor, followed by 0.5 M sodium nitrite; whereas 0.05 M disodium β‐glycerophosphate was a slower and less capable corrosion inhibitor. The admixing of inhibitors in fresh mortar consistently increased the capacitance and decreased the electrical resistance of hardened mortar. The effect of sodium nitrite inhibitor on the resistance of steel mortar interfacial film compensated that of corrosive NaCl by participating to the formation of a protective ferric oxide film.

Originality/value

The results reported shed light on the complex role of admixed salt and corrosion inhibitors in cement hydration and their implications on the durability of steel‐reinforced concrete.

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 4000